Клетки мозга восстанавливаются

Крылатое выражение «Нервные клетки не восстанавливаются» все с детства воспринимают как непреложную истину. Однако эта аксиома — не более чем миф, и новые научные данные его опровергают.

Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Почти 70% из них гибнут еще до рождения ребенка. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Конечно же погибают не только нейроны, но и другие клетки организма. Только все остальные ткани обладают высокой регенерационной способностью, то есть их клетки делятся, замещая погибшие. Наиболее активно процесс регенерации идет в клетках эпителия и кроветворных органах (красный костный мозг). Но есть клетки, в которых гены, отвечающие за размножение делением, заблокированы. Помимо нейронов к таким клеткам относятся клетки сердечной мышцы. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются?


Одно из возможных объяснений: в нервной системе одновременно «работают» не все, а только 10% нейронов. Этот факт часто приводится в популярной и даже научной литературе. Мне неоднократно приходилось обсуждать данное утверждение со своими отечественными и зарубежными коллегами. И никто из них не понимает, откуда взялась такая цифра. Любая клетка одновременно и живет и «работает». В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому, оставив гипотезу об «отдыхающих» нейронах, обратимся к одному из свойств нервной системы, а именно — к ее исключительной пластичности.

Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых «коллеги», которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, ограничение подвижности, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Значит, одна живая нервная клетка может заменить девять погибших.


Но пластичность нервной системы — не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант — возникновение новых нервных клеток в головном мозге взрослых млекопитающих, или нейрогенез.

Первое сообщение о нейрогенезе появилось в 1962 году в престижном научном журнале «Science». Статья называлась «Формируются ли новые нейроны в мозге взрослых млекопитающих?». Ее автор, профессор Жозеф Олтман из Университета Пердью (США) с помощью электрического тока разрушил одну из структур мозга крысы (латеральное коленчатое тело) и ввел туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе (участок переднего мозга) и коре головного мозга. В течение последующих семи лет Олтман опубликовал еще несколько работ, доказывающих существование нейрогенеза в мозге взрослых млекопитающих. Однако тогда, в 1960-е годы, его работы вызывали у нейробиологов лишь скепсис, их развития не последовало.

И только спустя двадцать лет нейрогенез был вновь «открыт», но уже в головном мозге птиц. Многие исследователи певчих птиц обращали внимание на то, что в течение каждого брачного сезона самец канарейки Serinus canaria исполняет песню с новыми «коленами». Причем новые трели он не перенимает у собратьев, поскольку песни обновлялись и в условиях изоляции.
еные стали детально изучать главный вокальный центр птиц, расположенный в специальном отделе головного мозга, и обнаружили, что в конце брачного сезона (у канареек он приходится на август и январь) значительная часть нейронов вокального центра погибала, — вероятно, из-за избыточной функциональной нагрузки. В середине 1980-х годов профессору Фернандо Ноттебуму из Рокфеллеровского университета (США) удалось показать, что у взрослых самцов канареек процесс нейрогенеза происходит в вокальном центре постоянно, но количество образующихся нейронов подвержено сезонным колебаниям. Пик нейрогенеза у канареек приходится на октябрь и март, то есть через два месяца после брачных сезонов. Вот почему «фонотека» песен самца канарейки регулярно обновляется.

В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Л. Поленова.

Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы — часть из них «затаивается» и ждет своего часа.

Как было показано, новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Однако потребовалось почти пятнадцать лет, чтобы доказать, что аналогичный процесс происходит и в нервной системе млекопитающих.


Развитие нейробиологии в начале 1990-х годов привело к обнаружению «новорожденных» нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих.

Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. У взрослых крыс за месяц из стволовых клеток образуется около 250 000 нейронов, замещая 3% всех нейронов гиппокампа. Продолжительность жизни таких нейронов очень высока — до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь (около 2 см). Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны.

Обонятельные луковицы головного мозга млекопитающих отвечают за восприятие и первичную обработку различных запахов, включая и распознавание феромонов — веществ, которые по своему химическому составу близки к половым гормонам. Сексуальное поведение у грызунов регулируется в первую очередь выработкой феромонов. Гиппокамп же расположен под полушариями мозга. Функции этой сложноорганизованной структуры связаны с формированием краткосрочной памяти, реализацией некоторых эмоций и участием в формировании полового поведения. Наличие у крыс постоянного нейрогенеза в обонятельной луковице и гиппокампе объясняется тем, что у грызунов эти структуры несут основную функциональную нагрузку. Поэтому нервные клетки в них часто гибнут, а значит, их необходимо обновлять.


Для того чтобы понять, какие условия влияют на нейрогенез в гиппокампе и обонятельной луковице, профессор Гейдж из Университета Салка (США) построил миниатюрный город. Мыши там играли, занимались физкультурой, отыскивали выходы из лабиринтов. Оказалось, что у «городских» мышей новые нейроны возникали в гораздо большем количестве, чем у их пассивных сородичей, погрязших в рутинной жизни в виварии.

Cтволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны. Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. (Светочувствительная внутренняя стенка глаза имеет «нервное» происхождение: состоит из видоизмененных нейронов — палочек и колбочек. Когда светочувствительный слой разрушается, наступает слепота.) Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Причем при пересадке стволовых клеток мозга в неповрежденный глаз никаких превращений с ними не происходило . Вероятно, при повреждении сетчатки глаза вырабатываются какие-то вещества (например, так называемые факторы роста), которые стимулируют нейрогенез. Однако точный механизм этого явления до сих пор не ясен.


Перед учеными встала задача показать, что нейрогенез идет не только у грызунов, но и у человека. Для этого исследователи под руководством профессора Гейджа недавно выполнили сенсационную работу. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство — способность накапливаться в делящихся клетках различных органов и тканей. Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей. Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Недавно проведенные исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых, но из стволовых клеток крови.
крытие этого феномена вызвало в научном мире эйфорию. Однако публикация в журнале «Nature» за октябрь 2003 года во многом остудила восторженные умы. Оказалось, что стволовые клетки крови действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образуя двуядерные клетки. Затем «старое» ядро нейрона разрушается, а его замещает «новое» ядро стволовой клетки крови. В организме крысы стволовые клетки крови в основном сливаются с гигантскими клетками мозжечка — клетками Пуркинье, правда, происходит это довольно редко: во всем мозжечке можно обнаружить лишь несколько слившихся клеток. Более интенсивное слияние нейронов происходит в печени и сердечной мышце. Пока совершенно непонятно, какой в этом физиологический смысл. Одна из гипотез заключается в том, что стволовые клетки крови несут с собой новый генетический материал, который, попадая в «старую» клетку мозжечка, продлевает ей жизнь.

Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний (заболеваний, сопровождающихся гибелью нейронов головного мозга). Препараты стволовых клеток для трансплантации получают двумя способами. Первый — это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход — использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками — заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это.


В некоторых лечебных учреждениях в США уже сформированы «библиотеки» нейрональных стволовых клеток, полученных из зародышевой ткани, и проводятся их пересадки пациентам. Первые попытки трансплантации дают положительные результаты, хотя на сегодняшний день врачи не могут разрешить основную проблему подобных пересадок: безудержное размножение стволовых клеток в 30-40% случаев приводит к образованию злокачественных опухолей. Пока не найдено подхода к предотвращению подобного побочного эффекта. Но, несмотря на это, трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона, ставших бичом развитых стран.

«Наука и жизнь» о стволовых клетках:

Белоконева О., канд. хим. наук. Запрет для нервных клеток. — 2001, № 8.

Белоконева О., канд. хим. наук. Праматерь всех клеток. — 2001, № 10.

Смирнов В., акад. РАМН, член-корр. РАН. Восстановительная терапия будущего. — 2001, № 8.

www.nkj.ru

Нервные клетки мозга не восстанавливаются: первое опровержение


Нервные клетки мозга стали заложниками научного авторитета. Сегодня уже ставшее крылатым утверждение испанского учёного многие люди с самого детства воспринимают как истину. А всё почему? Будучи нобелевским лауреатом 1906 года, Сантьяго Рамон-И-Халем пользовался большим уважением у современников. Поэтому его предположение о не восстановлении нервных клеток долгое время никто не решался опровергнуть. И лишь к концу прошлого столетия (только к 1999 году) сотрудники факультета психологии Принстонского университета Элизабет Гоулд и Чарлз Гросс доказали с помощью эксперимента, что зрелый мозг может продуцировать новые нейроны в количестве нескольких тысяч в день, причём этот процесс, именуемый нейрогенезом, происходит в течение всей жизни. Результаты исследований учёные опубликовали в авторитетном журнале «Science».

Нейробиология – прогресс через 100 лет

Опыты учёные проводили на обезьянах – генетически похожих на людей предках. Чтобы обнаружить новые нервные клетки мозга, Гоулд и Гросс ввели приматам специальное вещество-метку BrdU. Отметим, что эта метка включается исключительно в ДНК тех клеток, которые активно делятся. После инъекции, в разное время (от 2 часов до 7 дней), исследователи тестировали кору головного мозга подопытных.

Новые клетки с ДНК, содержащие BrdU, были обнаружены в трех разных зонах головного мозга из четырёх тестируемых: в префронтальной, темпоральной и задней париетальной областях.
вестно, что все эти области отвечают за когнитивные функции, то есть планирование, реализацию кратковременной памяти, узнавание объектов и лиц и пространственную ориентацию. Интересно, что ни одной новой клетки не образовалось в стриальной коре, которая ответственна за самые первые, более примитивные, операции, связанные с визуальным анализом. В связи с этим, Гоулд и Гросс предположили, что новые клетки могут быть важны для процесса обучения и памяти, являясь чистыми «листами бумаги», на которых записывается новая информация и новые навыки.

Наблюдения за «новичками» показали наличие у них длинных отростков – аксонов, а также способность узнавать определенные белки, которые являются нейроноспецифичными. За счёт этого учёные смогли сделать вывод, что вновь образованные клетки обладают всеми характеристиками нейронов.

Нейрогенезис существует. Окончательные результаты исследований Гоулд и Гросса

Как пояснили Гоулд и Гросс, новые клетки начинали размножаться в области мозга, которая называется субвентрикулярная зона (svz), и уже оттуда мигрировали в кору – к местам их постоянного пребывания, где и созревали до взрослого состояния.

Результаты исследований Гоулд и Гросса свидетельствуют о том, что нейрогенезис есть, и он играет очень важную роль в реализации высшей нервной деятельности головного мозга.

Гэйдж и Эриксон: нервные клетки мозга появляются в гиппокампе

Исследования Фреда Гэйджа из Салковского института биологических исследований (Калифорния) и Питера Эриксона из Салгренского университета (Швеция) подтвердили возможность появления новых нервных клеток в гиппокампе взрослых приматов, включая человека.

Учёные изъяли гиппокампальную ткань у пяти пациентов, которые умерли от рака. В своё время этим пациентам ввели инъекцию BrdU, чтобы найти раковые клетки. Гэйжд и Эриксон у всех умерших обнаружили большое количество нейронов, помеченных BrdU в гиппокампальной ткани. Важно, что возраст этих людей перед смертью был в пределах 57-72 лет. Это доказывает не только то, что нервные клетки восстанавливаются, но и то, что они образуются в гиппокампе в течение всей жизни человека.

Аутоиммунные лейкоциты восстанавливают нервные клетки. Исследование израильских учёных

К 2006 году появилось много доказательств того, что нервные клетки всё-таки восстанавливаются. Но никто, кроме израильских учёных, прежде не задавался вопросом: а как мозг узнаёт, что пора начать процесс регенерации?

Озадачившись этим вопросом, исследователи перебрали все виды клеток, которые были обнаружены ранее в голове у людей. Успешным оказалось изучение одного из подвидов лейкоцитов – Т-лимфоцитов. Специалисты предположили, что эти аутоиммунные лейкоциты, в основе которых лежат реакции иммунитета, направленные против собственных органов или тканей, занимаются не разрушением, а восстановлением нервной ткани.

Учёные сделали предположение, исходя из факта, что при повреждениях нервной ткани аутоиммунные Т-лимфоциты помогают собственным лейкоцитам – резидентам мозга. Они вместе уничтожают вредные вещества, образующиеся в поврежденных участках.

Чтобы проверить теорию, группа во главе с профессором Шварц, провела три серии экспериментов с мышами. Животных помещали в среду, стимулирующую их умственную и физическую активность. Для объективности результатов использовались три вида животных.

У здоровых мышей во время опытов начиналось усиленное формирование нервных клеток в гиппокампе – области головного мозга, отвечающей за память (это опять же доказывает верность исследований Гэйджа и Эриксона). Затем ученые повторили эксперимент, только с мышами, страдающими серьезной лейкопенией — дефицитом лейкоцитов (в том числе Т-лимфоцитов) в крови. У них в аналогичных условиях образовалось значительно меньше новых нервных клеток. Третий эксперимент провели на мышах, обладающих всеми важными лейкоцитами, за исключением T-лимфоцитов. И получили результат, идентичный второй части экспериментов.

Пониженное формирование нервных клеток подтвердило, что T-лимфоциты — существенные факторы нейрогенезиса. Причем способствовали формированию новых нейронов именно T-лимфоциты – аутоиммунные «убийцы клеток». Именно они отдавали первичную команду на восстановление нервных клеток. Для подтверждения своего вывода ученые ввели T-лимфоциты мышам с лейкопенией. И процесс формирования клеток мозга ускорился.

Восстанавливается по 700 нейронов в день. Исследования шведских учёных

Скорость, с которой восстанавливаются нервные клетки, измерили шведские ученые из Каролинского института. Оказалось, что она может достигать 700 новых нейронов в день.

К такому выводу учёные пришли в результате долгих исследований. Специалистов заинтересовала ситуация, происходившая в 50-е годы прошлого столетия. В это время проводились наземные ядерные испытания. Тогда они сильно навредили не только окружающей среде, выпустив в атмосферу радиоактивный изотоп – углерод-14, но и нанесли ущерб здоровью человека.

Научные сотрудники изучили нервные клетки людей, заставших испытания. Как выяснилось, они впитали в себя изотоп в повышенной концентрации, и он навсегда встроился в цепочки ДНК. Углерод-14 позволил определить возраст клеток. Выяснилось, что нервные клетки появлялись в разное время. А это значит, в течение всей жизни, наряду со старыми, рождались и новые.

И старость может быть в радость

На прошедшем недавно в Санкт-Петербурге Всемирном конгрессе психиатров известный немецкий нейробиолог профессор Геттингенского университета Гарольд Хютер заверил:

«Нервная ткань восстанавливается в любом возрасте. В 20 лет процесс идет интенсивно, а в 70 – медленно. Но идет».

Ученый привел в пример наблюдения канадских коллег за монахинями преклонного возраста. Специалисты наблюдали за женщинами 100 и более лет. Исследования их головного мозга на магнитно-резонансной томографии показали, что всё в порядке, и никаких проявлений старческого слабоумия нет.

По словам немецкого профессора, всё дело в образе жизни и мышлении этих женщин, которые постоянно чему-то учатся и учат. Монахини по своей натуре скромны и имеют устойчивые представления об устройстве мира. Они придерживаются активной жизненной позиции и молятся, рассчитывая изменить людей к лучшему. Впрочем, как утверждает Гарольд Хютер, таких результатов может добиться каждый, ухаживающий за собой, человек.

Итак, данные результаты исследований, которые свидетельствуют о том, что нервные клетки всё-таки восстанавливаются, помогают развеять не только народный миф. Они открывают новые пути лечения таких заболеваний нервной системы, как болезнь Паркинсона, болезнь Альцгеймера, болезнь Хантингтона.

Известно, что эти заболевания характеризуются тем, что нервные клетки либо погибают, либо теряют свою функцию. Недуг начинает прогрессировать, когда потеря нейронов достигает критического уровня. Возможно, с помощью научных открытий в области нейробиологии ученым удастся найти способы воздействия на нейрогенез. А значит, появится возможность помочь людям, мучающимся от «нервных» болезней, искусственно активировав производство новых нейронов в определенных областях мозга.

sciencepop.ru

На протяжении всей своей 100-летней истории нейронаука придерживалась догмы: мозг взрослого человека не подвержен изменениям. Считалось, что человек может терять нервные клетки, но не обретать новые. Действительно, если бы мозг был способен к структурным изменениям, как бы сохранялась память?

Кожа, печень, сердце, почки, легкие и кровь могут образовывать новые клетки для замены поврежденных. Вплоть до недавнего времени специалисты считали, что такая способность к регенерации не распространяется на центральную нервную систему, состоящую из головного и спинного мозга.

Однако за последние пять лет нейробиологи открыли, что мозг все же меняется в течение жизни: происходит образование новых клеток, позволяющих справиться с возникающими трудностями. Такая пластичность помогает мозгу восстанавливаться после травмы или заболевания, увеличивая свои потенциальные возможности.

Нейробиологи на протяжении десятков лет ищут способы улучшить состояние мозга. Стратегия лечения основывалась на восполнении недостатка нейромедиаторов — химических веществ, передающих сообщения нервным клеткам (нейронам). При болезни Паркинсона, например, мозг больного теряет способность вырабатывать нейромедиатор дофамин, поскольку производящие его клетки гибнут. Химический «родственник» дофамина, L-Допа, может временно облегчить состояние больного, но не излечить его. Для замены нейронов, погибающих при таких неврологических заболеваниях, как болезни Гентингтона и Паркинсона, и при травмах спинного мозга, нейробиологи пытаются имплантировать стволовые клетки, полученные из эмбрионов. В последнее время исследователи заинтересовались нейронами, полученными из эмбриональных стволовых клеток человека, которые при определенных условиях можно заставить образовывать в чашках Петри любые типы клеток человеческого организма.

Несмотря на то что у стволовых клеток много преимуществ, очевидно, следует развивать способности взрослой нервной системы к самовосстановлению. Для этого необходимо ввести вещества, стимулирующие мозг к образованию собственных клеток и восстановлению поврежденных нервных цепей.

Новорожденные нервные клетки

В 1960 — 70-х гг. исследователи пришли к выводу, что центральная нервная система млекопитающих способна к регенерации. Первые эксперименты показали, что основные ветви нейронов взрослого головного и спинного мозга — аксоны могут восстанавливаться после повреждения. Вскоре было обнаружено рождение новых нейронов в мозге взрослых птиц, обезьян и людей, т.е. нейрогенез.

Возникает вопрос: если центральная нервная система может образовывать новые нейроны, способна ли она восстанавливаться в случае болезни или травмы? Для того чтобы ответить на него, необходимо понять, как происходит нейрогенез во взрослом мозге и каким образом можно его стимулировать.

Рождение новых клеток происходит постепенно. Так называемые мультипотентные стволовые клетки в мозге периодически начинают делиться, давая начало другим стволовым клеткам, которые могут вырасти в нейроны или опорные клетки, называемые глией. Но для созревания новорожденные клетки должны избегать влияния мультипотентных стволовых клеток, что удается лишь половине из них — остальные гибнут. Такое расточительство напоминает процесс, происходящий в организме до рождения и в раннем детстве, когда возникает больше нервных клеток, чем необходимо для образования мозга. Выживают только те из них, которые формируют действующие связи с другими.

Станет ли уцелевшая молодая клетка нейроном или глиальной клеткой, зависит от того, в каком участке мозга она окажется и какие процессы будут происходить в этот период. Новому нейрону требуется более месяца, чтобы начать полноценно функционировать. посылать и принимать информацию. Таким образом. нейрогенез представляет собой не одномоментное событие. а процесс. который регулируется веществами. называемыми факторами роста. Например, фактор, названный «звуковой еж» (sonic hedgehog), обнаруженный впервые у насекомых, регулирует способность незрелых нейронов к пролиферации. Фактор notch и класс молекул. названных морфогенетическими протеинами кости, видимо, определяют, станет ли новая клетка глиальной или нервной. Как только это произойдет. другие факторы роста. такие как мозговой нейротрофический фактор (BDNF). нейротрофины и инсулинподобный фактор роста (IGF), начинают поддерживать жизнедеятельность клетки, стимулируя ее созревание.

Место действия

Новые нейроны возникают во взрослом мозге млекопитающих не случайно и. по всей видимости. образуются только в заполненных жидкостью пустотах в переднем мозге — в желудочках, а также в гиппокампе — структуре, спрятанной глубоко в мозге. имеющей форму морского конька. Нейробиологи доказали, что клетки, которым суждено стать нейронами. перемещаются из желудочков в обонятельные луковицы. которые получают информацию от клеток, расположенных в слизистой носа и чувствительных к запаху. Никто точно не знает, почему обонятельной луковице требуется столько новых нейронов. Легче предположить, зачем они нужны гиппокампу: поскольку эта структура важна для запоминания новой информации, дополнительные нейроны, вероятно. способствуют упрочению связей между нервными клетками, повышая способность мозга обрабатывать и хранить сведения.

Процессы нейрогенеза также обнаружены за пределами гиппокампа и обонятельной луковицы, например, в префронтальной коре — обители интеллекта и логики. а также в других областях взрослого головного и спинного мозга. Последнее время появляются все новые подробности о молекулярных механизмах, управляющих нейрогенезом, и о химических стимулах, регулирующих его. и мы вправе надеяться. что со временем можно будет искусственно стимулировать нейрогенез в любой части мозга. Зная, как факторы роста и локальное микроокружение управляют нейрогенезом, исследователи рассчитывают создать методы лечения, позволяющие восстановить больной или поврежденный мозг.

С помощью стимулирования нейрогенеза можно улучшить состояние пациента при некоторых неврологических заболеваниях. Например. причина инсульта — закупорка сосудов головного мозга, в результате чего из-за недостатка кислорода гибнут нейроны. После инсульта в гиппокампе начинает развиваться нейрогенез, стремящийся «вылечить» поврежденную ткань мозга с помощью новых нейронов. Большинство новорожденных клеток гибнет, однако некоторые успешно мигрируют к поврежденному участку и превращаются в полноценные нейроны. Несмотря на то что для компенсации повреждений при тяжелом инсульте этого недостаточно. нейрогенез может помочь мозгу после микроинсультов,которые часто проходят незамеченными. Сейчас нейробиологи пытаются применять васкуло-эпидермальный фактор роста (VEGF) и фактор роста фибробластов (FGF) для усиления естественного восстановления.

Оба вещества представляют собой крупные молекулы, которые с трудом преодолевают гематоэнцефалический барьер, т.е. сеть тесно переплетенных клеток, выстилающих кровеносные сосуды мозга. В 1999 г. биотехнологическая компания Wyeth-Ayerst Laboratories and Scios из Калифорнии приостановила клинические испытания FGF применяемого для лечения инсульта. поскольку его молекулы не попадали в мозг. Некоторые исследователи пытались решить эту задачу, соединяя молекулу FGF с другой, которая вводила клетку в заблуждение и заставляла ее захватывать весь комплекс молекул и переносить его в ткань мозга. Другие ученые методами генной инженерии создавали клетки, вырабатывающие FGF. и трансплантировали их в мозг. Пока подобные эксперименты проводились лишь на животных.

Стимулирование нейрогенеза может оказаться действенным при лечении депрессии. главной причиной которой (помимо генетической предрасположенности) считается хронический стресс. ограничивающий, как известно. количество нейронов в гиппокампе. Многие из выпускаемых лекарственных средств. показанных при депрессии. в том числе прозак. усиливают нейрогенез у животных. Интересно, что для снятия депрессивного синдрома с помощью этого препарата требуется один месяц — столько же. сколько и для осуществления нейрогенеза. Возможно. депрессия отчасти вызвана замедлением данного процесса в гиппокампе. Последние клинические исследования с применением методов визуализации нервной системы подтвердили. что у пациентов с хронической депрессией гиппокамп меньше, чем у здоровых людей. Длительное применение антидепрессантов. похоже. подстегивает нейрогенез: у грызунов. которым давали эти препараты на протяжении нескольких месяцев. в гиппокампе возникали новые нейроны.

Как мозг создает новые нейроны

Нейрональные стволовые клетки дают начало новым клеткам мозга. Они периодически делятся в двух основных областях: в желудочках (фиолетовый цвет), которые заполнены спинномозговой жидкостью, питающей центральную нервную систему, и в гиппокампе (голубой цвет) — структуре, необходимой для обучения и памяти. При пролиферации стволовых клеток (внизу) образуются новые ствоповые клетки и клетки-предшественники, которые могут превратиться либо в нейроны, либо в поддерживающие клетки, называемые глиальными (астроциты и дендроциты). Однако дифференцировка новорожденных нервных клеток может произойти только после того, как они уйдут прочь от своих предков (красные стрелки), что удается в среднем лишь половине из них, а остальные гибнут. Во взрослом мозге новые нейроны были обнаружены в гиппокампе и обонятельных луковицах, необходимых для восприятия запахов. Ученые надеются заставить взрослый мозг восстанавливаться, вызывая деление и развитие нейрональных стволовых клеток или клеток-предшественников там и тогда, где и когда это необходимо.

Стволовые клетки как метод лечения

Потенциальным средством для восстановления поврежденного мозга исследователи считают два типа стволовых клеток. Во-первых, нейрональные стволовые клетки взрослого мозга: редкие первичные клетки, сохранившиеся от ранних стадий эмбрионального развития, обнаруженные как минимум в двух областях мозга. Они могут делиться на протяжении всей жизни, давая начало новым нейронам и поддерживающим клеткам, называемым глией. Ко второму типу относятся человеческие эмбриональные стволовые клетки, выделенные из зародышей на очень ранней стадии развития, когда весь эмбрион состоит примерно из ста клеток. Такие эмбриональные стволовые клетки могут давать начало любым клеткам организма.

В большинстве исследований производится наблюдение за ростом нейрональных стволовых клеток в культуральных чашках. Они могут там делиться, их можно генетически пометить и затем трансплантировать назад в нервную систему взрослого индивидуума. В экспериментах, которые пока проводились только на животных, клетки хорошо приживаются и могут дифференцироваться в зрелые нейроны в двух областях мозга, где образование новых нейронов происходит и в норме, — в гиппокампе и в обонятельных луковицах. Однако в других областях нейрональные стволовые клетки, взятые из взрослого мозга, не торопятся становиться нейронами, хотя могут стать глией.

Проблема со взрослыми нейрональными стволовыми клетками состоит в том, что они пока еще незрелые. Если взрослый мозг, в который их пересадили, не будет вырабатывать сигналы, необходимые для стимуляции их развития в определенный тип нейронов — например в гиппокампальный нейрон, — они либо погибнут, либо станут глиальной клеткой, либо так и останутся недифференцированной стволовой клеткой. Для решения этого вопроса необходимо определить, какие биохимические сигналы заставляют нейрональную стволовую клетку стать нейроном данного типа, и затем направить развитие клетки по такому пути прямо в культуральной чашке. Ожидается, что после трансплантации в заданный участок мозга эти клетки останутся нейронами того же типа, сформируют связи и начнут функционировать.

Устанавливая важные связи

Поскольку проходит около месяца с момента деления нейрональной стволовой клетки до тех пор, пока ее потомок не включится в функциональные цепи мозга, роль этих новых нейронов в поведении, вероятно, определяется не столько родословной клетки, сколько тем, как новые и уже существующие клетки соединяются друг с другом (образуя синапсы) и с существующими нейронами, формируя нервные цепи. В процессе синаптогенеза так называемые шипики на боковых отростках, или дендритах, одного нейрона соединяются с основной ветвью, или аксоном, другого нейрона.

Как показывают недавние исследования, дендритные шипики (внизу) могут менять свою форму в течение нескольких минут. Это свидетельствует о том, что синаптогенез может лежать в основе обучения и памяти. Одноцветные микро-фотографии мозга живой мыши (красная, желтая, зеленая и голубая) были сделаны с интервалом в одни сутки. Многоцветное изображение (крайнее справа) представляет собой те же фотографии, наложенные друг на друга. Участки, не претерпевшие изменений, выглядят практически белыми.

Помоги мозгу

www.braintools.ru

С возрастом нам становится все труднее сосредотачиваться на новой информации. Нетренированная память ослабевает и дает сбои. Как сделать так, чтобы мозг не подводил и позволял понимать даже самые сложные вещи до старости?
Ученые не перестают напоминать: умственные способности ухудшаются потому, что между нервными клетками головного мозга ухудшается связь. И если раньше считалось, что нервные клетки не восстанавливаются, то сейчас появилось новое утверждение. Клетки головного мозга, а также нервные клетки можно восстановить с помощью регулярных умственных тренировок.

1. Мозгу нужно хорошее питание!
Нормальное функционирование мозга зависит от наличия в организме витаминов, которые препятствуют быстрой утомляемости, отвечают за скорость реакции, позволяют сохранить память острой, сосредоточиться… Такие витамины в больших количествах содержатся в постном красном мясе, говяжьей печени, вареном картофеле, ржаном хлебе, бананах, йогурте, овсянке, гречке, яблоках, жирной рыбе и грецких орехах.
2. Делай ежедневную гимнастику.

Для начала освой упражнение «Движение глазами». Оно мгновенно улучшает память и приводит голову в рабочее состояние. В течение 30 секунд одновременно двигай зрачками из стороны в сторону. Улучшится координация полушарий мозга, а зоны, отвечающие за память  активизируются.
Теперь глубоко подыши через нос. Во время глубокого дыхания организм расслабляется, а к мозгу поступает больше кислорода.
Сядь прямо и закрой рот. Такая поза позволит сосредоточиться и мыслить более «здраво». Поэкспериментируй: сначала реши в уме какую-нибудь математическую задачу, сидя на стуле сутулясь и с открытым ртом, а затем — выпрямившись, с закрытым ртом. Ты быстро почувствуешь разницу.
Для того, чтобы к головному мозгу начала поступать кровь, достаточно регулярно делать небольшую зарядку. Ты можешь делать приседания или гулять в парке по 30 минут… Такая легкая нагрузка «разбудит» мозг и активизирует его деятельность.
3. Решай! Играй! Запоминай!

Чтобы сохранить хорошую память на долгие годы, необходимо регулярно играть в шахматы, карты, лото, разгадывать кроссворды и судоку. Словом, тренировать мозг напрямую. Твоя главная задача — развить внимания. Ведь именно оно — главная составляющая хорошей памяти.
Старайся каждый день что-то запоминать. Новое слово на английском языке, короткий стишок, скороговорку… Используй зрительные образы, чтобы запомнить материал надолго. Не стыдись и обыкновенной «зубрежки».
Чтобы лучше запоминать, тебе необходимо вникнуть в суть предмета, представить его образно, используя простые ассоциации. Например, чтобы запомнить номер телефона, разложи его цифры на номера известных тебе квартир и дни рождания людей. В этом номере может быть зашифрован твой вес, возраст, длина волос и даже количество браков.
4. Нагружай свой мозг новой информацией.

Старайся каждый день одевать новые вещи. Ученые доказали, что в зависимости от одежды  меняются не только ощущения человека, но и образ мыслей. Поменяй руку, которой обычно чистишь зубы — это заставит тебя встряхнуться. Откажись от стереотипов. Отвечай нестандартно на привычные вопросы, вроде «Как дела?», «Ты уже покушала?». Попробуй «увидеть» свою квартиру с закрытыми глазами. Походи по комнатам, вспомни, где и как стоят разные предметы, какого они цвета, как они выглядят утром и вечером. С закрытыми глазами у тебя резко активизируются другие органы чувств. Пойди в магазин или на работу новой дорогой, пусть она будет длиннее прежней. Это положительно скажется на работе мозга. Прочти книгу, которую не читала раньше, например, экономическую теорию или законы рекламы. Отключите звук телевизора и, глядя на изображение, пытайся представить, о чем говорят герои сериала.
5. Учись удерживать внимание!

Посмотри на любой предмет, который находится в поле твоего зрения. Постарайся думать о нем столько, сколько сможешь. Если это дерево, думай только о том, что это — дерево. Через некоторое время ты заметишь, что думаешь о чем-то другом, но не об этом предмете. Причем, поток твоих «убежавших» мыслей будет представлять из себя логическую цепочку: какое это дерево, что из него делают, я видела такую вещь у подружки… У каждого человека будет своя логическая цепочка, но мысль непременно «убежит». Поймав этот поток, попытайся по ступенькам вернуться назад к «дереву», вспоминая каждое звено мысленной цепи. Затем повтори тоже самое с другим предметом. Упражнение нужно делать ежедневно.

А как делал Пифагор?

Великий математик каждое утро прокручивал все события минувшего дня, вспоминая их до самых подробностей и мельчайших деталей. Помимо этого он давал оценку собственным поступкам, задавая себе вопросы:»Что я сделал сегодня? Что не сделал полезного? Какие поступки заслуживают осуждения, а какие — похвалы?»
Эта техника получила впоследствии название «Экзамен сознания». Начав постепенно погружаться в прошлое, вспоминая то, что было вчера и позавчера, ты превратишь свой мозг в мощный компьютер. Через месяц-другой после регулярного выполнения «Экзамена сознания», ты привыкнешь держать внимание постоянно включенным… сможешь мгновенно восстанавливать события любого периода своей жизни вплоть до рождения, будешь легко запоминать наизусть огромные куски текста и длинные поэмы, ряды цифр, гаммы цветов…»

bestwom.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector