Получение из альдегида спирта


 

1. Из алканов. Метан может быть селективно окислен на гетерогенном катализаторе – серебре расчётным количеством кислорода до метанола:

Получение из альдегида спирта

 

Алканы с большим числом атомов углерода ,такие, например, как пропан и бутан, окисляются до смеси первичных и вторичных спиртов расчётным количеством кислорода в присутствии катализаторов – солей марганца. Реакция малоселективна – получается довольно большое количество примесей: альдегидов и кетонов с тем же числом атомов углерода, альдегидов и спиртов – продуктов деструкции

Получение из альдегида спирта

 

 

2. Из алкенов. К любому алкену можно присоединить воду в присутствии кислот

Получение из альдегида спирта

Присоединение идёт по правилу Марковникова.

3. Из алкинов. Ацетилен и терминальные алкины, реагируя с формальдегидом, другими альдегидами и кетонами, дают соответственно первичные, вторичные и третичные спирты


Получение из альдегида спирта

Получение из альдегида спирта

 

 

Получение из альдегида спирта

 

 

Реакции были впервые опубликованы в 1905 году А.Е. Фаворским и носят его имя.

 

 

4. Из алкадиенов. Алкадиены аналогично алкенам присоединяют в присутствии кислот воду.

 

Присоединение первого моля воды идёт преимущественно в положения 1 – 4. При

 

присоединении второго моля воды образуются диолы. Ниже представлены примеры обоих

 

случаев:

 

Получение из альдегида спирта

Получение из альдегида спирта

5. Из галоидных алкилов. Галоидные алкилы вступают с водными растворами щелочей в реакцию нуклеофильного замещения галогена на гидроксил:

Получение из альдегида спирта

 

 

Получение из альдегида спирта

 


Получение из альдегида спирта 6. Из дигалоидных производных. При действии щелочей на дигалоидные производные алканов получаются двухатомные спирты (или диолы):

 

 

Как показано выше из 1,2-дибромэтана получается 1,2-этандиол (этиленгликоль). Этот диол очень широко применяется для производства антифризов. Например, в незамерзающей жидкости для охлаждения двигателей внутреннего сгорания – «Тосол-А 40» его 40%.

Получение из альдегида спирта 7. Из тригалоидных производных. Из 1,2,3-трихлорпропана, например, получают широко используемый глицерин (1,2,3-пропантриол).

 

 

Получение из альдегида спирта 8. Из аминов. При нагревании с парами воды в присутствии катализатора протекает обратимая реакция, в которой конечными продуктами являются спирт с тем же строением углеродного скелета и аммиак.

 

 

Первичные амины можно перевести в спирты так же действием нитрита натрия в соляной кислоте при охлаждении до 2 – 5оС:

Получение из альдегида спирта

Получение из альдегида спирта 9. Из альдегидов и кетонов по реакции Меервейна – Понндорфа – Верлея. На кетон или альдегид действуют каким-либо спиртом в присутствии катализатора – алкоголята алюминия. В качестве алкоксильных групп берут остатки того же спирта, который взят в качестве реагента. Например, в приведённой ниже реакции вместе с нормальным бутиловым спиртом взят трибутилат алюминия. Реакция обратима и равновесие в ней сдвигают по принципу Ле-Шателье избытком спирта-реагента.


 

Первые публикации об этой реакции появились практически одновременно в двух разных немецких и одном французском химических журналах в 1925 – 1926 годах. Реакция имеет огромное значение, так как позволяет восстановить карбонильную группу в спиртовую, не восстанавливая двойные связи, нитро- и нитрозогруппы, которые водородом и другими восстановителями переводятся соответственно в простые связи и аминогруппы, например:

Получение из альдегида спирта

Как видно двойная связь, присутствовавшая в кетоне, сохранилась и в полученном спирте. Ниже показано, что при гидрировании кетогруппы одновременно гидрируется и двойная связь.

Получение из альдегида спирта

Аналогичная картина наблюдается и при наличии в кетоне нитрогруппы: в реакции Меервейна –Понндорфа-Верлея она сохраняется, а при гидрировании водородом на катализаторе восстанавливается до аминогруппы:

Получение из альдегида спирта

Получение из альдегида спирта

 

10. Из альдегидов и кетонов путём гидрированияна катализаторах – металлах платиновой группы: Ni, Pd, Pt :


Получение из альдегида спирта

 

 

Получение из альдегида спирта

11. Получение спиртов из альдегидов и кетонов путём синтезов Гриньяра.

Реакции, открытые Франсуа Огюстом Виктором Гриньяром в 1900 – 1920 годах имеют колоссальное значение для синтезов многих классов органических веществ. Так, например, с их помощью можно из любого галоидного алкила и формальдегида в три стадии получить первичный спирт:

Получение из альдегида спирта (1)

Получение из альдегида спирта

Получение из альдегида спирта

Для получения вторичного спирта надо вместо формальдегида взять любой другой альдегид:

Получение из альдегида спирта

Получение из альдегида спирта

При гидролизе такой соли получается спирт с числом атомов углерода равным сумме их в магнийорганическом соединении и в альдегиде:

Получение из альдегида спирта

Для получения третичного спирта вместо альдегида в синтезе используют кетон:


Получение из альдегида спирта

Получение из альдегида спирта

Получение из альдегида спирта

 

 

12. Из карбоновых кислот спирты можно получить только в две стадии: на первой из карбоновой кислоты действием пентахлорида фосфора или действием оксиддихлорида серы (IV) получают её хлорангидрид:

Получение из альдегида спирта

Получение из альдегида спирта

На второй стадии, полученный хлорангидрид гидрируют на палладии до спирта:

Получение из альдегида спирта

 

13. Из алкоголятов спирты очень легко получаются путём гидролиза при комнатной температуре:

Получение из альдегида спирта

Получение из альдегида спирта

Борные эфиры гидролизуются труднее – только при нагревании:

Получение из альдегида спирта

 

 

 

Выпадает в осадок если её больше, чем 4г/100г H2O

 

14. Из сложных эфиров спирты наряду с карбоновыми кислотами могут быть получены путём автокаталитического, кислотного или щелочного гидролиза. При автокаталитическом процессе в результате очень медленного гидролиза водой появляется слабая карбоновая кислота, которая в дальнейшем ходе реакции играет роль катализатора, заметно ускоряя расход сложного эфира и появление спирта во времени. Например, для реакции втор-бутилового эфира 2-метилпропановой кислоты кинетические кривые, то есть зависимости изменения молярных концентраций во времени представяют собой сигмоиды или S-образные кривые (смотрите график ниже реакции).


Получение из альдегида спирта

Получение из альдегида спирта

 

15. Если добавить к сложному эфиру сильную кислоту, которая является катализатором, то в

реакции не будет индукционного периода, когда гидролиз почти не идёт (от 0 до 1 времени).

Кинетические кривые в этом случае будут представлять собой экспоненты: нисходящую

для сложного эфира и восходящую для спирта. Процесс называется кислотным гидролизом:

Получение из альдегида спирта

16. Если добавить к сложному эфиру щёлочь (моль на моль или избыток) , то реакция так же описывается экспоненциальными кинетическими кривыми, но в отличие от кислотного гидролиза, где концентрации веществ стремятся к равновесным значениям, здесь конечная концентрация спирта практически равна исходной концентрации эфира. Ниже приведена реакция щелочного гидролиза того же сложного эфира и график с кинетическими кривыми. Как видно щёлочь здесь не катализатор, а реагент, и реакция необратима:


Получение из альдегида спирта

Получение из альдегида спирта

17. Из сложных эфиров спирты можно получить также по Буво и Блану. Этот способ был впервые опубликован авторами в двух разных французских химических журналах в 1903 и 1906 годах и заключается в восстановлении сложных эфиров натрием в спирте, например:

Получение из альдегида спирта

Как видно в реакции получаются два спирта: один из кислотной части сложного эфира и он всегда первичный, второй из спиртовой части и он может быть любым – первичным, вторичным или третичным.

18. Более современный способ получения спиртов из сложных эфиров заключается в восстановлении их комплексными гидридами до алкоголятов (реакция ( 1 ) ), которые затем легко переводятся в спирты путём гидролиза (реакции ( 2а ) и ( 2b ) ), например:

Получение из альдегида спирта

 

Получение из альдегида спирта

 

Получение из альдегида спирта

 

Источник: megaobuchalka.ru

Что такое альдегиды?


Альдегиды – кислородосодержащие производные углеводородов, содержащие карбонильную группу С=О. В альдегиде две валентности атома углерода карбонила заняты алкильным радикалом и атомом водорода. Общая структурная формула альдегида выглядит следующим образом:

Структурная формула альдегидов

Рис. 1. Структурная формула альдегидов.

Для альдегидов характерна изомерия углеводородного радикала. Они могут иметь неразветвленную или разветвленную цепь. По международной номенклатуре ИЮПАК (IUPAC) названия альдегидов производят от названий соответствующих углеводородов с прибавлением суффикса -аль, или от исторически сложившихся названий соответствующих карбоновых кислот, в которые они превращаются при окислении (муравьиный альдегид, уксусный альдегид и т.д.).

Получение альдегидов

Основные способы получения следующие:

  • окисление спиртов. Альдегиды получают при окислении первичных спиртов, а кетоны при окислении вторичных. Альдегиды, полученные из первичных спиртов, которые потом окисляются до карбоновых кислот. Чтобы альдегид не превратился в кислоту, его отгоняют в ходе реакции:

Формула получения альдегидов при окислении первичных спиртов

Рис. 2. Формула получения альдегидов при окислении первичных спиртов.

  • дегидрирование спиртов. В результате этого процесса пары спирта пропускают над нагретым катализатором. Этот способ позволяет получать карбонильные соединения без побочных продуктов окисления

Формула получения альдегидов при дегидрировании спиртов

Рис. 3. Формула получения альдегидов при дегидрировании спиртов.

  • гидролиз дигалогенпроизводных. При действии воды образуются нестойкие двухатомные спирты, которые в момент образования выделяют воду; образуются соединения с карбонильной группой. Реакция ускоряется в присутствии щелочей.
  • гидратация алкинов. При гидратации ацетилена образуется уксусный альдегид, при гидратации гомологов ацетилена – кетоны. При гидратации алкинов (реакция Кучерова) происходит присоединение воды к ацетилену в присутствии солей ртути, в результате чего образуется ацетальдегид:

Формула получение альдегидов при гидратации алкинов

Рис. 4. Формула получение альдегидов при гидратации алкинов.

Источник: obrazovaka.ru

Альдегиды — летучие жидкости органического состава, являющиеся продуктом неполного окисления спиртов. Карбонильная группа в молекулах альдегидов связана с одним атомом водорода и одной группой R.

Не часто встречаются в природе в отдельном виде, но, несомненно, играют важную роль в физиологических процессах растений и животных. Общая формула альдегидов CnH2nO.

Многие альдегиды имеют специфический запах. Высшие альдегиды, в особенности непредельные, используются в пищевой промышленности и парфюмерии.

Номенклатура и изомерия альдегидов

Названия альдегидов формируются путем добавления суффикса «аль» к названию алкана с соответствующим числом атомов углерода: метаналь, этаналь, пропаналь, бутаналь, пентаналь и т.д.

Вы можете встретить их молекулярные формулы, где группа OH записана наоборот — HO. Например: метаналь — HCHO, этаналь — CH3CHO, пропаналь — C2H5CHO. Это делают специально для того, чтобы их было легче отличить от спиртов.

Многие альдегиды имеют тривиальные названия. Наиболее известные: метаналь — формальдегид, этаналь — ацетальдегид. Замечу, что формалином называется 40% раствор формальдегида.

Для альдегидов характерна структурная изомерия: углеродного скелета, межклассовая изомерия с кетонами.

Получение альдегидов и кетонов
  • Окисление спиртов
  • Важно заметить, что при окислении первичных спиртов образуются альдегиды, при окислении вторичных спиртов — кетоны. Окисление с помощью оксида меди относится к лабораторным способам получения альдегидов.

  • Пиролиз солей карбоновых кислот
  • Этот способ также просто осуществить в лабораторных условиях. При пиролизе (нагревании без доступа кислорода) кальциевых или бариевых солей карбоновых кислот возможно получение кетонов.

  • Каталитическое дегидрирование спиртов
  • В присутствии катализатора и при нагревании спиртов от гидроксогруппы и прилежащего к ней атома углерода отщепляется по атому водорода. В результате образуется карбонильная группа.

  • Реакция Кучерова
  • Реакцией Кучерова называют гидратацию алкинов в присутствии солей двухвалентной ртути.

    В результате такой реакции ацетилен превращается в уксусный альдегид. Все остальные его гомологи: пропин, бутин, пентин и т.д. превращаются в соответствующие кетоны.

  • Гидролиз дигалогеналканов
  • Для получения альдегида два атома галогена должны находиться у первичного атома углерода, для получения кетонов — у вторичного.

    В результате такого гидролиза образуются двухатомные спирты, в которых две OH-группы прилежат к одному атому углерода. Такие соединения неустойчивы и распадаются на карбонильное соединение (альдегид или кетон) и воду.

  • Окисление метана
  • В промышленности окислением метана при температуре 500 °C и в присутствии катализатора получают формальдегид.

  • Кумольный способ получения ацетона (и фенола)
  • В прошлой теме, посвященной фенолам, мы касались данного способа. В результате такой реакции образуется не только фенол, но и ацетон.

Химические свойства альдегидов и кетонов

Запомните, что для альдегидов и кетонов характерны реакции присоединения по карбонильной группе. Это является важным отличием альдегидов от карбоновых кислот, для которых реакции присоединения не характерны.

  • Реакции присоединения
  • Для понимания механизма реакции важно вспомнить об электроотрицательности. В карбонильной группе кислорд, как более электроотрицательный элемент, тянет электронную плотность на себя от углерода. На атоме кислорода возникает частичный отрицательный заряд (δ-), а на атоме углерода частичный положительный (δ+).

    Основы школьного курса физики подсказывают, что отрицательный заряд притягивает положительный: именно так и будет происходить при присоединении различных молекул к карбонильной группе альдегидов и кетонов.

    Реакция гидрирования альдегидов происходит по типу присоединения, сопровождается разрывом двойной связи в карбонильной группе. Гидрирование альдегидов приводит к образованию первичных, а гидрирование кетонов — вторичных спиртов.

  • Окисление альдегидов
  • В результате полного окисления, горения, образуется углекислый газ и вода.

    2CH3CHO + 5O2 → 4CO2 + 4H2O

    Альдегиды легко окисляются до карбоновых кислот в лабораторных условиях. Это осуществляется с помощью известной реакции серебряного зеркала. Данная реакция является качественной для альдегидов.

    Кетоны, в отличие от альдегидов, в реакции окисления не вступают.

    Обратите особое внимание, что при написании реакции с аммиачным раствором серебра в полном виде, правильнее будет указать не кислоту, а ее аммиачную соль. Это связано с тем, что выделяющийся аммиак, который обладает основными свойствами, реагирует с кислотой с образованием соли

    Важно заметить, что при окислении метаналя, образовавшаяся муравьиная кислота тут же окисляется до угольной кислоты, которая распадается на углекислый газ и воду. Это связано с интересным фактом — наличием альдегидной группы у муравьиной кислоты.

    Окисление также возможно другим реагентом — гидроксидом меди II. Эта реакция также относится к качественным для альдегидов, в результате образуется кирпично-красный осадок оксида меди I.

Источник: studarium.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.