Получение этилена из уксусной кислоты



Источник: www.chem21.info

Промышленные способы получения уксусной кислоты

  1. Каталитическое окисление ацетальдегида в жидкой фазе в присутствии солей Mn или смеси солей Mn, Со, Ni и Fe при 56-75°С и давлении 0,2-0,3 МПа; окислитель — технический O 2 , степень конверсии более 95%, выход уксусной кислоты 92-93%. Окисление ацетальдегида O 2 воздуха в присутствии катализатора, состоящего из смеси ацетатов Со и Cu, при 50-60°C дает смесь уксусной кислоты и уксусного ангидрида в соотношении (45:55), степень конверсии 16-18%, выход (по сумме продуктов) 94-96%. Выделение и очистку уксусной кислоты производят ректификацией.
  2. Жидкофазное окисление воздухом углеводородных фракций нефти C 5 -C 6 при 140-180°C и давлении 5-8 МПа; наряду с уксусной кислотой получают муравьиную (15% по массе от суммы продуктов) и пропионовую кислоты (7-8%).
  3. Каталитическое карбонилирование метанола в присутствии комплексных соединений Rh при 185°С и давлении 2,8 МПа. Конверсия метанола близка к 100%, конверсия СО — 86%.
  4. Уксуснокислое брожение этанола (пищевая уксусная кислота).
  5. Пиролиз древесины (наряду с метанолом и ацетоном).

В лаборатории безводную уксусную кислоту получают перегонкой сухого CH 3 COONa и H 2 SO 4 .

Уксусная кислота – сырье в производстве уксусного ангидрида, ацетилхлорида, монохлоруксусной кислоты, ацетатов, MHогих красителей, инсектицидов, лекарственных средств (аспирин, фенацетин); используют в пищевой промышленности в изготовлении приправ, маринадов, консервов в виде столового уксуса – 3–15%-ный водный раствор и уксусной эссенции – 80%-ный водный раствор пищевой уксусной кислоты. Уксусная кислота – растворитель лаков, коагулянт латекса, ацетилирующий агент в органическом синтезе. Соли уксусной кислоты (Fe, Al, Cr и др.) – протравы при крашении.

Пары уксусной кислоты раздражают слизистые оболочки верхних дыхательных путей, растворы (концентрация выше 30% по массе) при соприкосновении с кожей вызывают ожоги. T.всп. 38°C, т. само-воспламенения 454°C, КПВ 3,3-22% (по объему), температурные пределы взрываемости 35-76°C. ПДК в атмосферном воздухе 0,06 мг/м 3 , в воздухе рабочей зоны 5 мг/м 3 .

Мировой объем произ-ва 3,5 млн. т/год (1990), в том числе США — 1,2, Япония — 0,33, Германия — 0,31.

Лит.: Рид Р., Праусниц Дж., Шервуд Т., Свойства газов и жидкостей, пер. с англ., 3 изд., Л., 1982; Kirk — Othmer encyclopedia, 3 ed., v. 1, N. Y., 1978, p. 124-47.

1. Литературный обзор

1.1 Свойства и применение ацетальдегида

Ацетальдегид (этаналь, уксусный альдегид) СНзСНО представляет собой бесцветную легкокипящую жидкость с резким удушливым запахом, с температурой кипения 20,2°С, температурой замерзания -123,5 °С и плотностью 783 кг/м 3 . Критическая температура ацетальдегида 188 °С, температура самовоспламенения 156°С. С воздухом ацетальдегид образует взрывчатые смеси с пределами воспламеняемости при 400°С 3,97 и 57,0% об. Смеси с кислородом воспламеняются при более низкой температуре — около 140 °С. Токсичен, пары ацетальдегида вызывают раздражении слизистых оболочек удушье, головную боль, ПДК составляет 5 мг/м 3 . Относится к 3-му классу опасности.

Ацетальдегид смешивается во всех отношениях с водой, этанолом, диэтиловым эфиром и другими органическими растворителями, с некоторыми образует азеотропные смеси.[1, с. 299 ].

Ацетальдегид — это один из важнейших многотоннажных продуктов переработки ацетилена и этилена. Он применяется в широких масштабах в промышленности органического синтеза. Важнейшие направления использования ацетальдегида:

o окисление в уксусную кислоту и уксусный ангидрид;

o получение циангидрина с последующей переработкой его в акрилонитрил, эфиры акриловой кислоты, молочную кислоту;

o альдольная конденсация и переработка альдоля в бутандиол-1,3 и бутадиен-1,3, н-бутанол, кротоновый альдегид;

o конденсация с аммиаком с образованием гомологов пиридина и винилпиридинов;

o конденсация с формальдегидом до пентаэритрита.

В настоящее время на производство уксусной кислоты и ее ангидрида, этилацетата и 2-этилгексанола расходуется в мире 95%, а в нашей стране 75% всего производимого ацетальдегида. [1, с. 300]

Помимо этого ацетальдегид или его триммер паральдегид применяют в производстве ацетатов целлюлозы, пероксиуксусной кислоты, этилацетата, глиоксаля, 2-этилгексанола, алкиламинов, алкилпиридинов, хлораля; как восстановитель применяется в производстве зеркал.[2, с.224]

1.2 Методы получения ацетальдегида

Известен ряд методов получения ацетальдегида. Рассмотрим эти методы.

1.2.1 Получение ацетальдегида гидратацией ацетилена на ртутных катализаторах

Реакция гидратации ацетилена на ртутных катализаторах была открыта М.Г. Кучеровым в 1881 г. и использовалась в промышленности с целью получения ацетальдегида более 60 лет:

Получение уксусной кислоты из этилена

Реакция сильно экзотермична. До 300 °С она практически необратима, но с дальнейшим ростом температуры равновесие смещается в сторону разложения ацетальдегида. Она протекает в нужном направлении с приемлемой скоростью в присутствии катализаторного раствора (10-20%-ная H2SO4, содержащая 0,5-0,6% HgO в виде HgSO4). Реакция протекает через промежуточное образование комплекса ацетилена с Hg 2+ . Дальнейшее его разложение приводит к образованию ацетальдегида[3, с.440]:

Скорость реакции увеличивается с повышением концентрации H2SO4 и температуры процесса, однако при этом возрастает и выход побочных продуктов, прежде всего за счет кротоновой конденсации с образованием кротонового альдегида: и альдольной конденсации с образованием смол (в том числе и с последующей полимеризацией кротонового альдегида).

Получение уксусной кислоты из этилена

Получение уксусной кислоты из этилена

С целью сокращения образования побочных продуктов в реакционную зону подается избыток ацетилена, с которым получающийся ацетальдегид уносится из зоны реакции. Это приводит и к увеличению производительности установки. Вместе с тем подача в избытке ацетилена приводит к уменьшению выхода ацетальдегида за один проход через катализаторный раствор и увеличению рециркуляционных потоков. Конверсия ацетилена в ацетальдегид за один проход составляет 30-50 %.

Ацетальдегид является сильным восстановителем. В данном случае в его присутствии Hg 2+ вначале восстанавливается до Hg + , а затем до металлической ртути:

Получение уксусной кислоты из этилена

в результате образуется ртутный шлам. Восстановителями также могут выступать H2S, РН3 и др. Этот процесс является крайне нежелательным, поскольку металлическая ртуть имеет высокое давление насыщенных паров, которые уносятся с реакционными газами, дезактивируя катализатор и загрязняя окружающую среду. Для предотвращения восстановления ртути в катализаторный раствор добавляют соли трехвалентного железа (в избытке по сравнению с солями ртути). Этим обеспечивается протекание реакции

Fe 3+ + Hg + Получение уксусной кислоты из этиленаFe 2+ + Hg 2+

поддерживающей ртуть в максимальной степени окисления.

Соль железа добавляют в избытке по отношению к ртути (

4%: в расчете на Fe2O3), поэтому катализаторный раствор работает достаточно длительное время. Однако в нем постепенно накапливаются соли двухвалентного железа, и раствор направляют на регенерацию, состоящую в окислении азотной кислотой. Несмотря на все эти мероприятия, ртуть все же теряется в виде шлама вместе с продуктами осмоления. Ее расход составляет 1-1,5 кг на 1 т ацетальдегида.[4, с. 195]

В промышленности процесс проводят при температуре 75-100 °С, пропуская ацетилен через водный катализаторный раствор. При 50 % конверсии ацетилена выход альдегида составляет 92-93% от прореагировавшего ацетилена. Основную реакцию осуществляют в полой футерованной колонне, заполненной катализаторным раствором и имеющей расширение в верхней части (заполненной насадкой).[3, с. 442]

Большим недостатком процесса синтеза ацетальдегида по Кучерову является необходимость применения дорогостоящей и весьма токсичной металлической ртути и ее соединений. Металлическая ртуть летуча; несмотря на высокую температуру кипения (357°С), она испаряется уже при комнатной температуре. При повышенной температуре в условиях процесса гидратации ртуть проникает почти во все аппараты установки и в получаемые продукты. Следствием этого являются значительные потери ртути и возможность профессиональных заболеваний у обслуживающего персонала.[5, с. 489]

Вместе с тем этот способ обладает многими преимуществами, которые могут быть успешно реализованы в других технологиях. В частности, этот процесс является одностадийным, обладает хорошей селективностью, может обеспечить одновременное получение двух целевых продуктов (ацетальдегид и кротоновый альдегид). Кроме того, реактор обеспечивает не только проведение собственно реакции, но и отделение продуктов от катализаторного раствора. Эффективное применение рециркуляции как по воде, так и ацетилену обеспечивает не только полное использование сырья, но и служит для подавления побочных реакций, повышая выход целевого продукта. Все это делает процесс достаточно привлекательным, однако высокотоксичная каталитическая система делает его бесперспективным.[3, с. 446]

Такое вещество как этилен входит в состав большинства газов-отходов заводов, занимающихся нефтепереработкой. В этих газах может содержаться 5-25% этилена, в зависимости от типа переработки нефти. Кроме этого, этилен может быть очень просто получен пиролизом пропана и этана, которые входят в состав тех же газов. Большое количество этилена получается при производстве дивинила из этилового спирта методом акад. С.В. Лебедева. В США большие количества этилена получают из природных газов, а также из бензина. Такое вещество как концентрированная уксусная кислота, также можно получить из этилена, через этиловый спирт-ацетальдегид, а также прямым окислением через ацетальдегид. Этиловый спирт, который получают при гидратации этилена, является очень важным источником для выработки синтетической уксусной кислоты. Что касается синтеза уксусной кислоты из этилового спирта, то его можно выполнить методом каталитического дегидрирования (с одновременным синтезом этилацетата), а также методом каталитического окисления и применяя комбинированный метод. Также существует завод производства уксусной кислоты методом прямого окисления этилового спирта.

Метод каталитического окисления заключается в следующем – над дегидрирующими катализаторами спиртовые пары пропускают в смеси с чистым воздухом, при температуре 550-600°С. В ходе дегидрирования спирта образуются водород и ацетальдегид. Водород сразу же окисляется кислородом воздуха в воду. Следовательно, благодаря связыванию водорода во время его выделения равновесия стремительно сдвигается в сторону ацетальдегидного образования. Поскольку процесс окисления экзотермический, то выделяется большое количество тепла. В реальных условиях тепла выделяется еще больше, поскольку некоторая часть спирта сгорает. В любом случае, тепло, которое выделяется в ходе окисления этилового спирта, способствует поддержанию в каталитической зоне, так что дополнительного подогрева извне не нужно. Катализатор при окислении может служить более продолжительное время, нежели при дегидрировании спирта и, следовательно, не нуждается в частой регенерации. Катализатором может служить серебро на пемзе. Наличие воды в спирте благоприятно влияет на весь процесс окисления, поскольку это уменьшает побочные реакции. Если же применять активные катализаторы, то присутствие воды в спирте просто необходимо.

При контактировании значительная часть спирта сгорает до С02 и Н2О а ацетальдегид, уносимый из конденсаторов большим объемом газов (азотом воздуха, двуокисью углерода и другими газами), в значительной мере теряется в системе улавливания. В этом процессе для получения одной тонны 90%-ного ацетальдегида, благодаря которому потом можно будет купить кислоту, затрачивается до 1,8т 95%-ного спирта. Ввиду экзотермичности процесса здесь не затрачивается тепло на обогревание контактного аппарата. В настоящее время метод получения ацетальдегида окислением спирта широко используется промышленностью. Получающийся ацетальдегид перерабатывают на уксусную кислоту, как описано ранее. Получение ацетальдегида окислением этилового спирта производят также на заводах синтетического каучука, на которых каталитическому превращению в дивинил подвергают смесь этилового спирта и ацетальдегида.

Дмитриевский химический завод — это ведущий производитель растворителей в России. Производство многокомпонентных растворителей, бутилацетата и уксусной кислоты реализуется уже более чем 100 лет. Поэтому в качестве продукции этого производителя можете не сомневаться. Растворитель 646 от Дмитриевского химического завода — это продукт эталонного качества, аналогов которому нет.

Источник: wineandwater.ru

Превращение этилена в ацетальдегид при 20 °С протекает с низкой скоростью. Реакция проходит сравнительно интенсивно при 100-130°С.

Для поддержания реакционной массы в жидком состоянии при такой температуре требуется повышенное давление (0,3-1,1 МПа), которое способствует и ускорению процесса за счет улучшения растворимости газов. Для повышения растворимости олефина и кислорода в водных растворах рекомендуется применять реакционные устройства, в которых осуществляется турбулизация жидкости и обеспечивается максимальная поверхность контакта фаз.[3, с. 458]

Для полного окисления олефинов в соответствующие альдегиды или кетоны мольное соотношение олефины:кислород должно составлять 2 :1. С целью безопасности работают обычно с недостатком кислорода (соотношение олефин:кислород от 2,5:1 до 4:1).

Во избежание побочных реакций (конденсации и хлорирования) предусматривается непрерывный отвод ацетальдегида из зоны реакции по мере его образования.

Выход ацетальдегида в зависимости от условий проведения реакций и состава катализатора колеблется в пределах 84-98%. При этом в качестве побочных продуктов образуются уксусная и муравьиная кислоты, хлорсодержащие вещества (метилхлорид, этилхлорид, хлорацетальдегид), кротоновый альдегид, диоксид углерода и др.

Процесс прямого окисления этилена в ацетальдегид может осуществляться как с использованием жидкого катализаторного раствора (гомогенно-каталитический процесс), так и на твердом катализаторе (гетерогенно-каталитический процесс). При гомогенном процессе хорошие результаты получаются при использовании водного раствора, содержащего 0,3-0,5% PdCl2, 12-33% СuС12•Н2О, 2-3% Сu(СН3СОО)2•Н2О. В небольших количествах иногда добавляется уксусная кислота.

Гетерогенный процесс может проводиться на катализаторе, представляющем смесь хлоридов Pd и Сu на носителе (оксид алюминия, силикагель, пемза, активированный уголь), например может использоваться катализатор следующего состава: 2% PdCl2 и 10% СuС12, нанесенные на активированный уголь. Гетерогенно-каталитический процесс может осуществляться как на катализаторе с неподвижным слоем (в трубчатом аппарате и в колонном аппарате с катализатором на полках), так и на катализаторе в псевдоожиженном состоянии. Гетерогенно-каталитический процесс сопряжен с трудностями, связанными с отводом теплоты реакции, но они могут быть устранены. В частности, одним из вариантов может быть отвод тепла за счет испарения впрыскиваемого между слоями катализатора водного конденсата. Однако это дает дополнительное количество загрязненной воды, требующей очистки. Поэтому лучше отводить тепло в обычном трубчатом аппарате, выполняющем одновременно роль котла-утилизатора.[3, с. 459]

Таким образом, в одностадийном способе процесс проводится при температуре 90-100°С и давлении 1 МПа, а в двухстадийном — окисление этилена проводится при температуре 100-120°С и давлении 0,8-1,3 МПа. Конверсия этилена в одностадийном способе за один проход составляет 30-50% (остальное возвращается в реактор в виде рецикла), выход ацетальдегида на пропущенный этилен в двухстадийном способе составляет 95 % (дополнительно образуется 1,0-1,5% уксусной кислоты и 1,0-1,3% хлорпроизводных).

Основное различие двух вариантов процесса состоит в том, что конверсия этилена за один проход при двухстадийном способе составляет около 100 % и, следовательно, не требуется его рециркуляция. В двухстадийном варианте может использоваться менее чистый этилен, чем в одностадийном. В первом случае требования по технике безопасности менее жесткие, однако двухстадийный способ требует больших капитальных затрат.[3, с. 460]

1.2.7 Новое в области синтеза ацетальдегида

Изложенные выше методы давно уже применяются на практике. Тем не менее, наука и технология не стоят на месте, постоянно происходит совершенствование старых методов и открытие новых. В данном разделе будет рассмотрено то, что появилось за последние годы в области синтеза уксусного альдегида.

Разработано и предложено достаточно большое количество альтернативных методов синтеза ацетальдегида. Так описан метод получения ацетальдегида взаимодействием водорода и кетена в присутствии катализатора, содержащего металл, выбранный из IX и X группы периодической системы.

CH2=C=O + H2

Получение этилена из уксусной кислоты» alt=»»>CH3CHO

Процесс проводится при температуре 50-200°С. Рассмотрены способы выделения ацетальдегида из реакционной смеси [7].

Исследована возможность получения ацетальдегида окислением н-бутанола кислородсодержащим газом в присутствии гетерогенного катализатора, в качестве которого используется гранулированный ортофосфат железа с размерами гранул 1-2 мм:

СН3 – СН2 – СН2 – СН2 – ОН + О2

Получение этилена из уксусной кислоты» alt=»»>2СН3СНО + Н2О

Процесс проводится при температуре 380-420°С, время контакта 0,8-1 с. Так при температуре 400°С и времени контакта 0,87 с, пропуская смесь 20% н-бутана, 20% кислорода и 60% кислорода селективность процесса достигала 63%.[8]

Рассмотрен процесс превращения этиленгликоля в ацетальдегид. Предложены возможные варианты механизма этого процесса [9].

СН2 – ОН

Получение этилена из уксусной кислоты» alt=»»> СН3СНО + Н2О

СН2 – ОН

Предложен метод получения ацетальдегида селективным гидрированием уксусной кислоты на катализаторе α-Fe2O3, нанесённом на основу SBN-15.

СН3СООН + Н2

Получение этилена из уксусной кислоты» alt=»»> СН3СНО + Н2О

Получена серия катализаторов, содержащих 20-60% α-Fe2O3. Рассмотрен механизм процесса, изучены активность и селективность образцов катализатора [10].

В области совершенствования уже используемых методов синтеза ацетальдегида следует упомянуть следующее.

При окислении этанола в ацетальдегид в качестве катализатора были предложены СаО и γ-Al2O3. Было рассмотрено влияние концентрации кислорода на выход ацетальдегида[11]. Для этого метода были также предложены катализаторы на основе родия [12].

На основе анализа факторов, влияющих на каталитическое окисление этилена кислородом в растворе PdCl2 и CuCl2, была разработана математическая модель технологического процесса производства ацетальдегида. Это позволило оптимизировать рабочие параметры и увеличить на 127% степень загрузки завода по производству ацетальдегида по сравнению с проектной мощностью[13].

Одним из перспективных методов синтеза ацетальдегида рассматривается гидролиз винилбутилового эфира. Предложен способ с непрерывным совмещённым реакционно-ректификационным процессом получения ацетальдегида гидролизом винилбутилового эфира. То есть в ректификационной колонне одновременно происходит синтез и отделение ацетальдегида. При температуре 72-85°С, соотношении эфир : вода 1:3 (моль) выход ацетальдегида составил 99% [14].

Выводы. Из рассмотренных методов получения ацетальдегида наиболее удобен метод окисления этилена в водном растворе хлорида палладия. Процесс проходит с высоким выходом ацетальдегида (до 98%). Этилен является относительно дешёвым и доступным сырьём. В процессе производства не используются ядовитые вещества, такие как ртуть при гидратации ацетилена. Аппаратное оформление процесса достаточно простое и требует относительно небольших капитальных затрат. Себестоимость ацетальдегида, произведённого из этилена почти вдвое ниже себестоимости продукта, получаемого гидратацией ацетилена. Поэтому в качестве метода получения и выбран именно этот метод.

1.3 Анализ основной реакции

Процесс окисления ацетальдегида в ацетилен протекает согласно следующему уравнению химической реакции:

СН2 = СН2 + 0,5О2

Получение этилена из уксусной кислоты» alt=»»> СН3СНО

1.3.1Физические свойства реагентов и продуктов реакции

В следующей таблице приведены основные физические свойства реагентов и продуктов реакции[15]:

1.3.2 Электронная структура реагентов и продуктов реакции

1.3.2.1.Электронная структура этилена

Главным структурным элементом, определяющим реакционную способность этилена, как и всех олефинов, является двойная связь, представляющая собой сочетание σ- и π-связей ( sp2 -гибридизация).

При образовании двойных связей в молекулах ненасыщенных соединений встречают с гибридизацию одной s- и двух р-орбиталей углерода с образованием трех эквивалентных гибридных орбиталей, называемую sp2-орбиталями. Каждая из них имеет цилиндрическую симметрию относительно одной из трех осей, расположенных в плоскости под углом 120°, В реальной молекуле этилена угол Н-С-Н равен 116,7°[16, с.30].

Получение этилена из уксусной кислоты» alt=»»>

Рис. 1 Схема образования sp2-гибридного состояния электронной оболочки атома углерода

Ось четвертой атомной р-орбитали, не затронутой гибридизацией, расположена под прямым углом к плоскости, в которой лежат три оси sp2-гибридных орбиталей.

Перекрывание трех гибридизованных орбиталей с орбиталями других атомов дает σ-связи. Перекрывание двух негибридизованных p-орбиталей между собой дает так называемую π-связь.

π-Связь менее прочна, чем σ-связь, так как p-электронные орбитали с параллельными осями перекрываются значительно меньше, чем при образовании теми же p-электронами или s-электронами σ -связи (перекрывание по оси орбиталей). Общая прочность (σ + π)-связей в этилене составляет 607,1 кДж/моль, в то время как для σ -связи между двумя углеродными атомами в этане она составляет 350,0 кДж/моль. Разница 257,1 кДж/моль является приблизительной мерой прочности π -связи.

Источник: mirznanii.com

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения этилена и/или уксусной кислоты путем контактирования этана и/или этилена и содержащего молекулярный кислород газа при 100 — 600oС и 1 50 бар с каталитической композицией, содержащей вольфрам, рений, ванадий, сурьму и ниобий в сочетании с кислородом, отличающийся тем, что используют каталитическую композицию, дополнительно содержащую по крайней мере один элемент, выбранный из группы литий, натрий, калий, рубидий и цезий, и имеющую следующие относительные молярные отношения элементов, находящихся в сочетании с кислородом:

WaRecVbNb0,01-0,2Sb0,005-0,2Dd,

где Д по крайней мере один элемент, выбранный из группы литий, натрий, калий, рубидий, цезий;

a 0,01 1,0;

b 0,001 1,0;

c 0,001 1,0;

d 0,001 1,0;

причем a + b + c + d 0,5 1,0

2. Способ по п.1, отличающийся тем, что элемент D в сочетании с кислородом содержит литий.

3. Способ по п.1, отличающийся тем, что используют каталитическую композицию, состав которой отвечает эмпирической формуле, выбранной из группы

W0,46Re0,111V0,240Nb0,064Sb0,03K0,10;

W0,48Re0,117V0,254Nb0,067Sb0,03K0,05;

W0,50Re0,121V0,262Nb0,070Sb0,03K0,02;

W0,46Re0,111V0,240Nb0,064Sb0,03K0,10;

W0,50Re0,121V0,262Nb0,070Sb0,03K0,02;

W0,48Re0,117V0,254Nb0,067Sb0,03K0,05;

W0,44Re0,11V0,23Nb0,06Sb0,03K0,14;

причем элементы присутствуют в комбинации с кислородом.

4. Способ по любому из пп.1 3, отличающийся тем, что процесс проводят в присутствии водяного пара.

5. Каталитическая композиция для получения этилена и/или уксусной кислоты, содержащая вольфрам, рений, ванадий, сурьму, ниобий в сочетании с кислородом, отличающаяся тем, что она дополнительно содержит по крайней мере один элемент, выбранный из группы литий, натрий, калий, рубидий и цезий, и имеет следующие относительные молекулярные отношения элементов, находящихся в сочетании с кислородом:

WaRecVbNb0,01-0,2Sb0,005-0,2Dd,

где D по крайней мере один элемент, выбранный из группы литий, натрий, калий, рубидий, цезий;

a 0,01 1,0;

b 0,001 1,0;

c 0,001 1,0;

d 0,001 1,0;

причем a + b + c + d 0,5 1,0.

6. Композиция по п.5, отличающаяся тем, что D в сочетании с кислородом содержит литий.

7. Композиция по п.6, отличающаяся тем, что d 0,01 0,5.

8. Композиция по п.7, отличающаяся тем, что d 0,02 0,14.

9. Композиция по п.5, отличающаяся тем, что ее состав соответствует эмпирической формуле, выбранной из группы

W0,46Re0,111V0,240Nb0,064Sb0,03K0,10;

W0,48Re0,117V0,254Nb0,067Sb0,03K0,05;

W0,50Re0,121V0,262Nb0,070Sb0,03K0,02;

W0,46Re0,111V0,240Nb0,064Sb0,03K0,10;

W0,50Re0,121V0,262Nb0,070Sb0,03K0,02;

W0,48Re0,117V0,254Nb0,067Sb0,03K0,05;

W0,44Re0,11V0,23Nb0,06Sb0,03K0,14;

причем элементы присутствуют в комбинации с кислородом.

Источник: www.freepatent.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.