Как из спирта получить альдегид

Уксусный альдегид имеет химическую формулу CH3COH. На вид он бесцветный, прозрачный, с резким запахом, может кипеть уже при комнатной температуре 20°C, с легкостью растворяется в воде и органических соединениях. Так как наука не стоит на месте, то сейчас получить уксусный альдегид из этилового спирта довольно просто.

Природа двух основных веществ

Ацетальдегид (этаналь) распространен в природе, встречается в продуктах и в большинстве растений. А также этаналь является составляющей автомобильных выхлопов и дыма от сигарет, поэтому он относится к категории сильных ядовитых веществ. Его можно синтезировать искусственно разными способами. Самый популярный метод – получить уксусный альдегид из этилового спирта. В качестве катализатора используют оксид меди (или серебра). В результате реакции получаются альдегид, водород и вода.

Этиловый спирт (этанол) представляет собой обычный всем известный пищевой C2H5OH. Он широко применяется в изготовлении алкогольных напитков, в медицине для дезинфекции, при производстве бытовой химии, духов, средств гигиены и прочего.

Этиловый спирт в природе не встречается, его производят с помощью химических реакций. Основные способы получения вещества следующие:

  • Брожение: определенные фрукты или овощи подвергают действию дрожжевого грибка.
  • Изготовление в промышленных условиях (применение серной кислоты).

Второй способ дает более высокую концентрацию этанола. С помощью первого варианта получится достичь только около 16% этого вещества.

Способы получения ацетальдегида из этанола

Процесс получения ацетальдегида из этилового спирта происходит по следующей формуле: C2H5OH + CuO = CH3CHO + Cu + H2O

В данном случае используют этанол и оксид меди, под воздействием высокой температуры происходит реакция окисления и получается уксусный альдегид.

Существует также другой метод получения альдегида – дегидрирование спирта. Он появился еще около 60 лет назад и пользуется популярностью до сих пор. Дегидрирование имеет множество положительных качеств:

  • нет выделений ядовитых токсинов, отравляющих атмосферу;
  • комфортные и безопасные условия реакции;
  • в процессе реакции выделяется водород, который тоже можно использовать;
  • не нужно тратиться на дополнительные составляющие – достаточно одного этилового спирта.

Получение альдегида данным методом происходит так: этанол нагревают до четырехсот градусов и каталитическим способом из него выходит водород. Формула процесса выглядит так: C2H5OH ͢ CH3CHO + H2.

Отщепление водорода происходит благодаря высокой температуре и низкому давлению. Как только температура упадет, а давление возрастет, H2 вернется и ацетальдегид снова станет спиртом.


При использовании метода дегидратации применяют также медный или цинковый катализатор. Медь в данном случае — очень активное вещество, способное терять активность во время реакции. Поэтому делают смесь из меди, оксидов кобальта и хрома, а затем наносят ее на асбест. Это дает возможность провести реакцию при температуре 270–300°C. В этом случае трансформация этанола достигает от 34 до 50%.

Определение оптимального метода

Если сравнивать метод окисления спирта с методом дегидратации, то второй обладает явным преимуществом, так как при нем образуется намного меньше токсических веществ и одновременно фиксируется наличие в контактных газах высокой концентрации этаналя. Эти газы при дегидратации содержат лишь ацетальдегид и водород, а при окислении имеют в составе разбавленный азотом этанол. Поэтому получить ацетальдегид из контактных газов легче и потерь его будет намного меньше, чем при окислительном процессе.


Еще одним важным качеством метода дегидратации является то, что полученное вещество применяют для производства уксусной кислоты. Для этого берут сульфат ртути и воду. Получается реакция по следующей схеме: CH3CHO + HgSO4 + H2O = CH3COOH + H2SO4 + Hg.

Для завершения реакции добавляют сульфат железа, который окисляет ртуть. Чтобы выделить уксусную кислоту, полученный раствор фильтруют и добавляют щелочной раствор.

Если нет готового HgSO4 (неорганическое соединение из соли металла и серной кислоты), то его готовят самостоятельно. Необходимо в 4 части серной кислоты добавить 1 часть оксида ртути.

Дополнительный способ

Существует еще один способ получения уксусного альдегида. Его используют для определения качества полученного спирта. Для его реализации потребуются: фуксинсернистая кислота, этиловый спирт и хромовая смесь (K2Cr2O7 + H2SO4).

В сухую склянку вливают хромовую смесь (2 мл), кладут кипятильный камень и добавляют этиловый спирт (2 мл). Пробирку накрывают трубкой для отвода газов и вставляют другой конец в емкость с фуксинсернистой кислотой. Смесь нагревают, в результате она меняет свой цвет на зеленый. В процессе реакции этанол окисляется и превращается в ацетальдегид, который в виде паров идет по трубке и, попадая в пробирку с фуксинсернистой кислотой, окрашивает ее в малиновый цвет.


Источник: dispanseri.ru

 

1. Из алканов. Метан может быть селективно окислен на гетерогенном катализаторе – серебре расчётным количеством кислорода до метанола:

Как из спирта получить альдегид

 

Алканы с большим числом атомов углерода ,такие, например, как пропан и бутан, окисляются до смеси первичных и вторичных спиртов расчётным количеством кислорода в присутствии катализаторов – солей марганца. Реакция малоселективна – получается довольно большое количество примесей: альдегидов и кетонов с тем же числом атомов углерода, альдегидов и спиртов – продуктов деструкции

Как из спирта получить альдегид

 

 

2. Из алкенов. К любому алкену можно присоединить воду в присутствии кислот

Как из спирта получить альдегид

Присоединение идёт по правилу Марковникова.

3. Из алкинов. Ацетилен и терминальные алкины, реагируя с формальдегидом, другими альдегидами и кетонами, дают соответственно первичные, вторичные и третичные спирты


Как из спирта получить альдегид

Как из спирта получить альдегид

 

 

Как из спирта получить альдегид

 

 

Реакции были впервые опубликованы в 1905 году А.Е. Фаворским и носят его имя.

 

 

4. Из алкадиенов. Алкадиены аналогично алкенам присоединяют в присутствии кислот воду.

 

Присоединение первого моля воды идёт преимущественно в положения 1 – 4. При

 

присоединении второго моля воды образуются диолы. Ниже представлены примеры обоих

 

случаев:

 

Как из спирта получить альдегид

Как из спирта получить альдегид

5. Из галоидных алкилов. Галоидные алкилы вступают с водными растворами щелочей в реакцию нуклеофильного замещения галогена на гидроксил:

Как из спирта получить альдегид

 

 

Как из спирта получить альдегид

 

Как из спирта получить альдегид 6. Из дигалоидных производных. При действии щелочей на дигалоидные производные алканов получаются двухатомные спирты (или диолы):

 

 

Как показано выше из 1,2-дибромэтана получается 1,2-этандиол (этиленгликоль). Этот диол очень широко применяется для производства антифризов. Например, в незамерзающей жидкости для охлаждения двигателей внутреннего сгорания – «Тосол-А 40» его 40%.


Как из спирта получить альдегид 7. Из тригалоидных производных. Из 1,2,3-трихлорпропана, например, получают широко используемый глицерин (1,2,3-пропантриол).

 

 

Как из спирта получить альдегид 8. Из аминов. При нагревании с парами воды в присутствии катализатора протекает обратимая реакция, в которой конечными продуктами являются спирт с тем же строением углеродного скелета и аммиак.

 

 

Первичные амины можно перевести в спирты так же действием нитрита натрия в соляной кислоте при охлаждении до 2 – 5оС:

Как из спирта получить альдегид

Как из спирта получить альдегид 9. Из альдегидов и кетонов по реакции Меервейна – Понндорфа – Верлея. На кетон или альдегид действуют каким-либо спиртом в присутствии катализатора – алкоголята алюминия. В качестве алкоксильных групп берут остатки того же спирта, который взят в качестве реагента. Например, в приведённой ниже реакции вместе с нормальным бутиловым спиртом взят трибутилат алюминия. Реакция обратима и равновесие в ней сдвигают по принципу Ле-Шателье избытком спирта-реагента.


 

Первые публикации об этой реакции появились практически одновременно в двух разных немецких и одном французском химических журналах в 1925 – 1926 годах. Реакция имеет огромное значение, так как позволяет восстановить карбонильную группу в спиртовую, не восстанавливая двойные связи, нитро- и нитрозогруппы, которые водородом и другими восстановителями переводятся соответственно в простые связи и аминогруппы, например:

Как из спирта получить альдегид

Как видно двойная связь, присутствовавшая в кетоне, сохранилась и в полученном спирте. Ниже показано, что при гидрировании кетогруппы одновременно гидрируется и двойная связь.

Как из спирта получить альдегид

Аналогичная картина наблюдается и при наличии в кетоне нитрогруппы: в реакции Меервейна –Понндорфа-Верлея она сохраняется, а при гидрировании водородом на катализаторе восстанавливается до аминогруппы:

Как из спирта получить альдегид

Как из спирта получить альдегид

 

10. Из альдегидов и кетонов путём гидрированияна катализаторах – металлах платиновой группы: Ni, Pd, Pt :


Как из спирта получить альдегид

 

 

Как из спирта получить альдегид

11. Получение спиртов из альдегидов и кетонов путём синтезов Гриньяра.

Реакции, открытые Франсуа Огюстом Виктором Гриньяром в 1900 – 1920 годах имеют колоссальное значение для синтезов многих классов органических веществ. Так, например, с их помощью можно из любого галоидного алкила и формальдегида в три стадии получить первичный спирт:

Как из спирта получить альдегид (1)

Как из спирта получить альдегид

Как из спирта получить альдегид

Для получения вторичного спирта надо вместо формальдегида взять любой другой альдегид:

Как из спирта получить альдегид

Как из спирта получить альдегид

При гидролизе такой соли получается спирт с числом атомов углерода равным сумме их в магнийорганическом соединении и в альдегиде:

Как из спирта получить альдегид

Для получения третичного спирта вместо альдегида в синтезе используют кетон:

Как из спирта получить альдегид

Как из спирта получить альдегид


Как из спирта получить альдегид

 

 

12. Из карбоновых кислот спирты можно получить только в две стадии: на первой из карбоновой кислоты действием пентахлорида фосфора или действием оксиддихлорида серы (IV) получают её хлорангидрид:

Как из спирта получить альдегид

Как из спирта получить альдегид

На второй стадии, полученный хлорангидрид гидрируют на палладии до спирта:

Как из спирта получить альдегид

 

13. Из алкоголятов спирты очень легко получаются путём гидролиза при комнатной температуре:

Как из спирта получить альдегид

Как из спирта получить альдегид

Борные эфиры гидролизуются труднее – только при нагревании:

Как из спирта получить альдегид

 

 

 

Выпадает в осадок если её больше, чем 4г/100г H2O

 

14. Из сложных эфиров спирты наряду с карбоновыми кислотами могут быть получены путём автокаталитического, кислотного или щелочного гидролиза. При автокаталитическом процессе в результате очень медленного гидролиза водой появляется слабая карбоновая кислота, которая в дальнейшем ходе реакции играет роль катализатора, заметно ускоряя расход сложного эфира и появление спирта во времени. Например, для реакции втор-бутилового эфира 2-метилпропановой кислоты кинетические кривые, то есть зависимости изменения молярных концентраций во времени представяют собой сигмоиды или S-образные кривые (смотрите график ниже реакции).


Как из спирта получить альдегид

Как из спирта получить альдегид

 

15. Если добавить к сложному эфиру сильную кислоту, которая является катализатором, то в

реакции не будет индукционного периода, когда гидролиз почти не идёт (от 0 до 1 времени).

Кинетические кривые в этом случае будут представлять собой экспоненты: нисходящую

для сложного эфира и восходящую для спирта. Процесс называется кислотным гидролизом:

Как из спирта получить альдегид

16. Если добавить к сложному эфиру щёлочь (моль на моль или избыток) , то реакция так же описывается экспоненциальными кинетическими кривыми, но в отличие от кислотного гидролиза, где концентрации веществ стремятся к равновесным значениям, здесь конечная концентрация спирта практически равна исходной концентрации эфира. Ниже приведена реакция щелочного гидролиза того же сложного эфира и график с кинетическими кривыми. Как видно щёлочь здесь не катализатор, а реагент, и реакция необратима:

Как из спирта получить альдегид

Как из спирта получить альдегид

17. Из сложных эфиров спирты можно получить также по Буво и Блану. Этот способ был впервые опубликован авторами в двух разных французских химических журналах в 1903 и 1906 годах и заключается в восстановлении сложных эфиров натрием в спирте, например:

Как из спирта получить альдегид

Как видно в реакции получаются два спирта: один из кислотной части сложного эфира и он всегда первичный, второй из спиртовой части и он может быть любым – первичным, вторичным или третичным.

18. Более современный способ получения спиртов из сложных эфиров заключается в восстановлении их комплексными гидридами до алкоголятов (реакция ( 1 ) ), которые затем легко переводятся в спирты путём гидролиза (реакции ( 2а ) и ( 2b ) ), например:

Как из спирта получить альдегид

 

Как из спирта получить альдегид

 

Как из спирта получить альдегид

 

Источник: megaobuchalka.ru

Источник: www.chem21.info

Сущность двух основных веществ

Прозрачные колбы и минзурки

Уксусный альдегид имеет и другое название ацетальдегид, этанал или метилформальдегид. Его формула имеет вид: CH3-CHO.

Если рассматривать соединение с точки зрения химических свойств, то вещество представляется собой жидкость, не имеющую цвет, но с едким резким запахом. Отлично растворяется в воде и имеет температуру кипения в 20ºС.

Получить уксусный альдегид можно нагрев паральдегид (триммер) с кислотой неорганического происхождения. Второй способ, через окисление этилена или по-другому его называют процесс Вакера. Окислителем является хлорид палладия

Самый популярный способ, с помощью которого возможно получение альдегида – окисление этилового спирта, но с использованием меди или серебра в качестве катализатора. После дегидратации, помимо альдегида образуется также водород и вода.

Это один из самых часто встречаемых соединений, которое можно найти в любом продукте, начиная от хлебобулочных изделий, заканчивая плодами растений. Он  является составной частью дыма от сигарет и автомобильных выхлопов. Именно поэтому он относится к категории сильно ядовитых веществ, которые загрязняют токсинами атмосферу.

Этанол или этиловый спирт является простым спиртом, обозначается как C2H5OH, относится к категории одноатомных спиртов. Представляет собой жидкость, летучего состава и горючего.

Важнейшая составляющая алкогольных напитков, оказывает угнетающий эффект на нервную систему человека, при этом успокаивает его. Является составной частью топливной жидкости, многих растворителей и широко применяется в медицине, как средство дезинфекции и антисептик. Из этилового спирта готовят настойки, добавляют в бытовую химию, антифризы и омыватели. Паста для чистки зубов, парфюм и гели для душа состоят из спирта.

Лаборант держит в руке емкость с зеленой жидкостьюОн является результатом химических реакций, т.к. в природе не встречается.

Основные пути получения:

  1. Брожение. Продукты сельскохозяйственной деятельности подвергают воздействию дрожжей, вследствие чего и выделяется этанол, но его концентрация не так высока, не достигает и 15%.
  2. Производство в промышленных условиях. После уникальных автоматизированных этапов получения этилового спирта, получается жидкость с высокой концентрацией.

Процесс получения Ацетальдегида

Как уже было сказано, одним из способов получения уксусного альдегида является реакция окисления, которая осуществляется с использованием высоких температур и оксида меди. Формула является составной часть получения уксусной кислоты и выглядит следующим образом:

C2H5OH + CuO(t) = Cu + H2O + CH3CHO,

Несомненно, процесс достаточно удобный, но существует и иной способ получения уксусного альдегида.

Процесс дегидрирования этилового спирта был популярен еще 50 лет назад.

Макет Множество положительных моментов имеет данный способ, к примеру:

  1. Не выделяются ядовитые токсины, отравляющие организм и атмосферу.
  2. Несложные и мягкие условия осуществления реакции, нет опасности для жизни человека.
  3. Вследствие реакции получается водород. Это одно из самых универсальных веществ, которому могут найти различные применения.
  4. Нет нужды использовать различные нефтяные продукты, поскольку за основу берется только этиловый спирт.

Итак, превращение происходит под воздействием примерно 400°С, отщепляется водород, каталитическим способом. Гидрогенизация – это метод каталитического синтеза, который основывается на окислительно-восстановительных процессах, связанных подвижным равновесием.

Формула химической реакции имеет вид:

C2H5OH  CH3CHO + H2

С увеличением температуры и резким снижением давления молекулы водорода направлены на преобразование ацетальдегида, но как только характеристики поменяются, давление повысится, а температура упадет, H2 приведет к образованию этанола. Именно такое воздействие условий составляет реакция гидрогенизации.

Химическая лабораторияДля данного метода также используют катализатор в виде меди или цинка. Медь – сильный и активный катализатор, который способен, во время реакции, потерять активность. Поэтому создают некую смесь из меди, оксида кобальта (не более 5%), и всего 2% оксида хрома, все это наносится на асбест. Если имеется данный катализатор, то реакцию осуществляют всего при 280-300° С. Степень трансформации этанола в такой ситуации равна 33-50% за один проход через катализатор.

Преимущество второго метода перед первым в том, при дегидрировании образуется намного меньше побочных токсических веществ, но, при этом фиксируется высокий показатель ацетальдегида в контактных газах. Контактные газы данной реакции это пары ацетальдегида и водорода, в равном соотношение (обычно 1:1), а вот контактные газы окислительного процесса состоят из разбавленного азотом спирта, который вводится с воздухом. По этой причине, выделить ацетальдегид из контактных газов реакции дегидрирования намного проще, и процент потерь будет существенно ниже, чем у окислительной реакции.

Еще одним важным достоинством является то, что из дегидрированного спирта появляется этилацетат, он является очень ценным продуктом.

Прозрачные емкости на столеОбычно, после трансформации в альдегид, его используют для синтезирования уксусной кислоты. Чтобы получить ее, необходимо провести процесс окисления ртутью ацетальдегид:

CH3CHO + HgSO4 + H2O = CH3COOH + H2SO4 + Hg

При этом стоит учитывать, что ртуть – это не ускоритель и чтобы остановить заключающую реакцию, добавляют сульфат железа (III), именно он и проводит окисление ртути.

Чтобы не допустить гидролиз солей, добавляют серной кислоты. А порой, если нет сульфата ртути (II), готовят раствор самостоятельно: в серной кислоте растворяют оксид ртути. Берут примерно в соотношении 4:1 серной кислоты и оксид ртути.

Получается химический раствор и ради отщепления уксусной кислоты, его необходимо профильтровать и добавить раствор щелочи.

Результат уксусной кислоты высчитывают только с учетом того, что карбид кальция чистейший. Выявить соотношение в процентах полученной кислоты к теоретическому показателю – один из путей, как можно получить выход уксусной кислоты.

Источник: alcogolizm.com

Что такое альдегиды?

Альдегиды – кислородосодержащие производные углеводородов, содержащие карбонильную группу С=О. В альдегиде две валентности атома углерода карбонила заняты алкильным радикалом и атомом водорода. Общая структурная формула альдегида выглядит следующим образом:

Структурная формула альдегидов

Рис. 1. Структурная формула альдегидов.

Для альдегидов характерна изомерия углеводородного радикала. Они могут иметь неразветвленную или разветвленную цепь. По международной номенклатуре ИЮПАК (IUPAC) названия альдегидов производят от названий соответствующих углеводородов с прибавлением суффикса -аль, или от исторически сложившихся названий соответствующих карбоновых кислот, в которые они превращаются при окислении (муравьиный альдегид, уксусный альдегид и т.д.).

Получение альдегидов

Основные способы получения следующие:

  • окисление спиртов. Альдегиды получают при окислении первичных спиртов, а кетоны при окислении вторичных. Альдегиды, полученные из первичных спиртов, которые потом окисляются до карбоновых кислот. Чтобы альдегид не превратился в кислоту, его отгоняют в ходе реакции:

Формула получения альдегидов при окислении первичных спиртов

Рис. 2. Формула получения альдегидов при окислении первичных спиртов.

  • дегидрирование спиртов. В результате этого процесса пары спирта пропускают над нагретым катализатором. Этот способ позволяет получать карбонильные соединения без побочных продуктов окисления

Формула получения альдегидов при дегидрировании спиртов

Рис. 3. Формула получения альдегидов при дегидрировании спиртов.

  • гидролиз дигалогенпроизводных. При действии воды образуются нестойкие двухатомные спирты, которые в момент образования выделяют воду; образуются соединения с карбонильной группой. Реакция ускоряется в присутствии щелочей.
  • гидратация алкинов. При гидратации ацетилена образуется уксусный альдегид, при гидратации гомологов ацетилена – кетоны. При гидратации алкинов (реакция Кучерова) происходит присоединение воды к ацетилену в присутствии солей ртути, в результате чего образуется ацетальдегид:

Формула получение альдегидов при гидратации алкинов

Рис. 4. Формула получение альдегидов при гидратации алкинов.

Источник: obrazovaka.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector