C2h4 дегидрирование

Яркий представитель непредельных углеводородов — этен (этилен). Физические свойства: бесцветный горючий газ, взрывоопасный в смеси с кислородом и воздухом. В значительных количествах этилен получают из нефти для последующего синтеза ценных органических веществ (одноатомных и двухатомных спиртов, полимеров, уксусной кислоты и других соединений).

Гомологический ряд этилена, sp2-гибридизация

Углеводороды, сходные по строению и свойствам с этеном, называются алкенами. Исторически закрепился еще один термин для этой группы — олефины. Общая формула CnH2n отражает состав всего класса веществ. Первый его представитель — этилен, в молекуле которого атомы углерода образуют не три, а всего две õ-связи с водородом. Алкены — непредельные или ненасыщенные соединения, их формула C2H4. Смешиваются по форме и энергии только 2 p- и 1 s-электронное облако атома углерода, всего формируются три õ-связи.
о состояние называется sp2-гибридизацией. Четвертая валентность углерода сохраняется, в молекуле возникает π-связь. В структурной формуле особенность строения находит отражение. Но символы для обозначения разных типов связи на схемах обычно используются одинаковые — черточки или точки. Строение этилена определяет его активное взаимодействие с веществами разных классов. Присоединение воды и других частиц происходит благодаря разрыву непрочной π-связи. Освободившиеся валентности насыщаются за счет электронов кислорода, водорода, галогенов.

Этилен: физические свойства вещества

Этен при обычных условиях (нормальном атмосферном давлении и температуре 18°C) — бесцветный газ. Он обладает сладким (эфирным) запахом, его вдыхание оказывает наркотическое действие на человека. Затвердевает при –169,5°C, плавится при таких же температурных условиях. Кипит этен при –103,8°C. Воспламеняется при нагревании до 540°C. Газ хорошо горит, пламя светящееся, со слабой копотью. Этилен растворяется в эфире и ацетоне, значительно меньше — в воде и спирте. Округленная молярная масса вещества — 28 г/моль. Третий и четвертый представители гомологического ряда этена — тоже газообразные вещества. Физические свойства пятого и следующих алкенов отличаются, они являются жидкостями и твердыми телами.

Получение и свойства этилена

Немецкий химик Иоган Бехер случайно использовал этиловый спирт в опытах с концентрированной серной кислотой. Так впервые был получен этен в лабораторных условиях (1680 год). В середине XIX века А.М. Бутлеров дал соединению название этилен. Физические свойства и химические реакции также были описаны известным русским химиком. Бутлеров предложил структурную формулу, отражающую строение вещества. Способы его получения в лаборатории:


  1. Каталитическое гидрирование ацетилена.
  2. Дегидрогалогенирование хлорэтана в реакции с концентрированным спиртовым раствором сильного основания (щелочи) при нагревании.
  3. Отщепление воды от молекул этилового спирта (дегидратация). Проходит реакция в присутствии серной кислоты. Ее уравнение: Н2С–СН2–OH → Н2С=СН2 + Н2О

Промышленное получение:

  • переработка нефти — крекинг и пиролиз углеводородного сырья;
  • дегидрирование этана в присутствии катализатора. H3C–CH3 → H2C=CH2 + H2

Строение этилена объясняет его типичные химические реакции — присоединение частиц атомами C, которые находятся при кратной связи:

  1. Галогенирование и гидрогалогенирование. Продуктами этих реакций являются галогенопроизводные.
  2. Гидрирование (насыщение водородом), получение этана.
  3. Окисление до двухатомного спирта этиленгликоля. Его формула: OH–H2C–CH2–OH.
  4. Полимеризация по схеме: n(H2C=CH2) → n(-H2C–CH2-).

Области применения этилена

При фракционной перегонке нефти в больших объемах получают этилен. Физические свойства, строение, химическая природа вещества позволяют использовать его в производстве этилового спирта, галогенопроизводных, спиртов, оксида, уксусной кислоты и других соединений. Этен — мономер полиэтилена, а также исходное соединение для полистирола.

Дихлорэтан, который получают из этена и хлора, является хорошим растворителем, используется в производстве поливинилхлорида (ПВХ). Из полиэтилена низкого и высокого давления изготавливают пленку, трубы, посуду, из полистирола — футляры для CD-дисков и другие детали. ПВХ — это основа линолеума, непромокаемых плащей. В сельском хозяйстве этеном обрабатываются плоды перед уборкой урожая для ускорения созревания.

fb.ru

а) CH3-CH3 → CH2=CH2 + H2 (этан → этен);б) CH3-CH2-CH3 → CH2=CH-CH3 + H2 (пропан → пропен).

2) В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода — получение алкадиенов; выделение водорода:

в) CH3-CH2-CH2-CH3 → CH2=CH-CH=CH2 + 2H2 (бутан → бутадиен-1,3 — дегидрирование удалённых связей С—С).

Реакции электрофильного замещения


Изомеризация:Под действием катализатора (например, AlCl3) происходит изомеризация алкана: например, бутан (C4H10), взаимодействуя с хлоридом алюминия (AlCl3), превращается из н-бутана в 2-метилпропан.С марганцовокислым калием (KMnO4) и бромной водой (Br2) алканы не взаимодействуют.

7.Алкены. Строение. Изомерия. Способы получения алкенов.

Алке́ны (олефиныэтиленовые углеводороды) — ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой CnH2n. Атомы углерода при двойной связи находятся в состоянии sp² гибридизации, и имеют валентный угол 120°. Простейшим алкеном является этилен (C2H4). По номенклатуре IUPACназвания алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.

Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил». Тривиальные названия: CH2=CH «винил»CH2=CHCH2 «аллил».

ЭЛЕКТРОННОЕ СТР-Е ДВОЙНОЙ СВЯЗИ

В соответствии с теорией гибридизации двойная связь образуется за счет перекрывания вдоль линии связи С-С sp²-гибридных орбиталей атомов углерода (σ-связь) и бокового перекрывания углеродных p-орбиталей (π-связь).

В состоянии sp² гибридизации электронное состояние атома углерода можно представить следующим образом:


C2h4 дегидрирование

Все атомы этилена лежат в одной плоскости, а величина валентного угла связи CH практически равна 120°. Центры углеродных атомов в этилене находятся на расстоянии 0,134 нм, то есть длина двойной связи несколько короче, чем С-С.

Согласно теории молекулярных орбиталей линейная комбинация двух атомных 2p-орбиталей углерода формирует две молекулярные π-орбитали этилена[1]:

Первый потенциал ионизации этилена составляет 10,51 эВ[2], что позволяет электрону относительно легко уходить (электрофильное взаимодействие) с высшей занятой молекулярной орбитали (ВЗМО). В то же время, низшая связывающая молекулярная орбиталь (НСМО) этилена имеет достаточно низкую энергию: −1,6-1,8 эВ, что объясняет относительную легкость присоединения электрона с образованием аниона[2] (нуклеофильное взаимодействие).

Добавление метильного заместителя снижает потенциал ионизации π— электронов примерно на 0,6-0,8 эВ и повышает энергию НСМО на 0,2 эВ, а ВЗМО на 0,7 эВ[2].


ИЗОМЕРИЯ

 Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная. Например, единственным изомером пропена является циклопропан (C3H6) по межклассовой изомерии. Начиная сбутена, существуют изомеры по положению двойной связи (бутен-1 и бутен-2), по углеродному скелету (изобутилен или метилпропен) и геометрические изомеры (цис-бутен-2 и транс-бутен-2). С ростом числа атомов углерода в молекуле количество изомеров быстро возрастает.

C2h4 дегидрирование Алкены могут существовать в виде пространственных или геометрических изомеров.

Различают:

цис- изомеры: заместители расположены по одну сторону от двойной связи;

транс- изомеры: заместители расположены по разные стороны от двойной связи.

IUPAC рекомендует называть геометрические изомеры по следующей номенклатуре:

Z изомеры: старшие заместители у углеродных атомов двойной связи находятся по одну сторону относительно двойной связи;

E изомеры: старшие заместители у углеродных атомов двойной связи находятся по разные стороны относительно двойной связи.

СПОСОБЫ ПОЛУЧЕНИЯ АЛКЕНОВ:

Основным промышленным методом получения алкенов является каталитический и высокотемпературный крекинг углеводородов нефти и природного газа. Для производства низших алкенов используют также реакцию дегидратации соответствующих спиртов.


В лабораторной практике обычно применяют метод дегидратации спиртов в присутствии сильных минеральных кислот[1], дегидрогалогенирование и дегалогенирование соответствующих галогенпроизводных; синтезы Гофмана, Чугаева, Виттига и Коупа[

Дегидрирование алканов Это один из промышленных способов получения алкенов[13][14]. Температура: 350—450 °C, катализатор — Cr2O3. Также используются алюмомолибденовые и алюмоплатиновые катализаторы[15]. Для получения транс-алкенов используют MOH/EtOH, для цис-производных NaNH2/NH3

C2h4 дегидрирование

C2h4 дегидрирование

Дегидрогалогенирование и дегалогенирование алканов Отщепление галогенов у дигалогеналканов происходит в присутствии цинка[16]:

C2h4 дегидрирование

Дегидрогалогенирование проводят при нагревании действием спиртовыми растворами щелочей[17]:

C2h4 дегидрирование

При отщеплении галогенводорода образуется смесь изомеров, преобладающий из которых определяется правилом Зайцева: отщепление протона происходит от менее гидрогенизированного атома углерода.

Дегидратация спиртов Дегидратацию спиртов ведут при повышенной температуре в присутствии сильных минеральных кислот[16]:


C2h4 дегидрирование

C2h4 дегидрирование

В современной практике алкены из вторичных и третичных спиртов также получают с использованием дегидратирующего реагента — реагента Бёрджесса[18]:

C2h4 дегидрирование

Гидрирование алкинов Частичное гидрирование алкинов требует специальных условий и наличие катализатора (например, дезактивированного палладия — катализатора Линдлара)[16]:

C2h4 дегидрирование  (цис-изомер)

C2h4 дегидрирование  (транс-изомер) 
C2h4 дегидрирование

Реакция Виттига Реакция Виттига — стереоселективный синтез алкенов взаимодействием карбонильных соединений и алкилиденфосфоранов (илидов фосфониевых солей)[19]:

C2h4 дегидрирование

C2h4 дегидрирование

C2h4 дегидрирование

Для превращения солей фосфония в илиды используются бутиллитий, гидрид, амид или алкоголят натрия, а также некоторые другие сильные основания.

В реакцию могут вступать самые различные карбонильные соединения, среди которых ароматические и алифатические альдегиды и кетоны, в том числе содержащие двойные и тройные связи и различные функциональные группы.

В лабораторной практике часто используют более современную модификацию (1959 год) реакции Виттига — реакцию Хорнера-Уодсворта-Эммонса[20]:

C2h4 дегидрирование


Преимущество использования фосфонатов заключается в том, что образующиеся в ходе реакции фосфаты легко отмываются водой. Кроме того, реакция позволяет избирать оптическое направление элиминирования, получая на выходе транс— (термодинамический контроль) или цис-изомеры (кинетический контроль)[18].

Реакция Кнёвенагеля Реакция Кнёвенагеля — конденсация альдегидов или кетонов с соединениями, содержащими активную CH2-группу[18]:

C2h4 дегидрирование

Реакция имеет очень широкий диапазон применения, при этом помимо эфиров малоновой кислоты, в реакцию могут вступать и другие соединения, например: CH3CN, CH3NO2, LiCH2COOC2H5 и пр.[21].

Реакция Чугаева

Реакция Чугаева — взаимодействие спиртов с CS2 и NaOH с последующим метилированием и дальнейшим пиролизом образовавшихся S-метилксантогенатов[22]:

C2h4 дегидрирование

C2h4 дегидрирование

Реакция Гофмана

Исчерпывающее метилирование по Гофману — разложение четвертичных аммониевых оснований на алкен, третичный амин и воду[23]:

C2h4 дегидрирование

На первой стадии реакции действием метилиодида амин превращают в четвертичный аммонийиодид, который далее переводят в гидроксид действием оксида серебра, наконец, последний этап — разложение —ведут при 100-200 °C, часто при пониженном давлении[24].

Элиминирование по Гофману приводит к образованию наименее замещенных алкенов (против правила Зайцева).

Метод используется, в основном, для получения некоторых циклических алкенов и в химии алкалоидов[24].

Реакция Коупа

Реакция Коупа — разложение N-окисей третичных аминов[24]:

C2h4 дегидрирование

8. Химические свойства алкенов: реакции электрофильного присоединения (галогенирование, гидрогалогенирование, гидратация), их механизм. Правило Марковникова и его объяснение.

Алкены химически активны. Их химические свойства во многом определяются наличием двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения и реакции радикального присоединения. Реакции нуклеофильного присоединения обычно требуют наличие сильного нуклеофила и для алкенов не типичны.

Особенностью алкенов являются также реакции циклоприсоединения и метатезиса.

Алкены легко вступают в реакции окисления, гидрируются сильными восстановителями или водородом под действием катализаторов до алканов, а также способны к аллильному радикальному замещению.

Реакции электрофильного присоединенияВ данных реакциях атакующей частицей является электрофил.

ГалогенированиеГалогенирование алкенов, проходящее в отсутствие инициаторов радикальных реакций — типичная реакция электрофильного присоединения. Она проводится в среде неполярных инертных растворителей (например: CCl4):

C2h4 дегидрирование

Реакция галогенирования стереоспецифична —- присоединение происходит с противоположных сторон относительно плоскости молекулы алкена[1]

Механизм реакций подобного типа в общем виде:

C2h4 дегидрирование

ГидрогалогенированиеЭлектрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова:

C2h4 дегидрирование

C2h4 дегидрирование

Однако в присутствии перекисей присоединение происходит преимущественно против этого правила (эффект Хараша)[1]:

C2h4 дегидрирование

Это объясняется тем, что реакция в данном случае будет протекать по радикальному механизму и присоединение радикала Br.идет по стерически наиболее доступному концевому атому углерода двойной связи:

C2h4 дегидрирование

ГидратацияРеакция присоединения воды к алкенам протекает в присутствии серной кислоты[21]:

C2h4 дегидрирование

Реакция протекает по правилу Марковникова.

Правило Морковникова  При присоединении галогеноводорода к несимметричному алкену атом водорода присоединяется к более гидрогенизированному атому углерода.

Для объяснения преобладания более замещённого галогенида над менее замещённым в продуктах реакции обычно прибегают к рассмотрению механизма электрофильного присоединения к алкенам.

C2h4 дегидрирование

Реакция протекает в две стадии. На первой, медленной стадии происходит присоединение протона H+к двойной связи: при этом протон может связываться с одним из двух атомов углерода, образующих двойную связь. Образующиеся карбокатионы И1 и И2 имеют различную энергию (устойчивость), поскольку положительный заряд в них делокализуется с разной эффективностью. По этой причине вторичный карбокатион И2 является более устойчивым, и соответствующий ему бромид П2 образуется в большем количестве.

9.Стереохимия реакций присоединения к двойной связи алкенов (на примере бронирования циклогексена, цис— и транс-алкенов).

В случае бромирования симметричных алкенов, например, цис— или транс-гексенов-3 должны образоваться или рацемат (D,L-форма), или мезо-форма конечного дибромида, что и наблюдается в действительности.

C2h4 дегидрирование

C2h4 дегидрирование

C2h4 дегидрирование

C2h4 дегидрирование

При присоединении брома к циклогексену первоначально образуется транс-1,2-дибромциклогексан в а,а-конформации, которая затем сразу же переходит в энергетически более выгодную е,е-конформацию. Анти-присоединение галогенов к двойной связи позволяет отвергнуть механизм одностадийного синхронного присоединения одной молекулы галогена к двойной связи, которое может осуществляться только как син-присоединение. Анти-присоединение галогена не согласуется также и с образованием открытого карбкатиона RCH+CH2Hal в качестве интермедиата. В открытом карбокатионе возможно свободное вращение вокруг С-С-связи, что должно приводить после атаки аниона Br к образованию смеси продуктов как анти-, так и син-присоединения. Стереоспецифическое анти-присоединение галогенов явилось главной причиной создания концепции бромониевого или хлорониевого ионов в качестве дискретных промежуточных частиц. Эта концепция идеально удовлетворяет правилу анти-присоединения, поскольку нуклеофильная атака галогенид-иона возможна с анти-стороны по любому из двух атомов углерода галогенониевого иона по SN2 механизму.

C2h4 дегидрирование

В случае несимметрично замещенных алкенов это должно приводить к двум энантиомерам трео-формы при присоединении брома к цис-изомеру или к энантиомерам эритро-формы при галоидировании транс-изомера. Это действительно наблюдается при присоединении брома, например, к цис— и транс-изомерам пентена-2.

C2h4 дегидрирование

C2h4 дегидрирование

C2h4 дегидрирование

C2h4 дегидрирование

10. Реакции радикального присоединения к двойным связям алкенов (присоединение по Карашу). Механизм, объяснение региоселективности.

Механизм реакции радикального присоединения включает в себя следующие стадии:

Первая стадия — инициирование цепи. Она может начаться спонтанно, фотохимически, электрохимически, посредством нагревания или путем химического иницирования[2].

Вторая стадия — развитие цепи. На этой стадии радикалы реагируют с молекулами, образуя продукты реакции и новые радикалы.

Третья стадия — обрыв цепи или рекомбинация свободных радикалов.

C2h4 дегидрирование

Реакции радикального замещения ускоряются в условиях генерирования свободных радикалов и замедляются в присутствии веществ, улавливающих свободные радикалы.

Радикальное присоединение идет против правила Марковникова (эффект Хараша). Вызвано это повышенной стабильностью третичных, аллильных и некоторых других радикалов, образующихся при присоединении атакующего радикала в определённую позицию в молекуле.

Региоселективность — явление, при котором в химической реакции один путь разрыва и образования связей преобладает над остальными возможными путями. В зависимости от степени региоселективности реакции могут быть частично или полностью региоселективными (во втором случае часто применяют терминрегиоспецифичность, хотя ИЮПАК не рекомендует его использовать)[1].

Региоселективность является одним из типов селективности в органической химии. Она относится к тем случаям, когда в реакции образуется несколько структурно изомерных продуктов[2]. Явление региоселективности обусловлено конкуренцией между различными группами молекулы вследствие их разной способности образовывать связи. Примером может служить преобладание продукта пара-замещения при хлорировании толуола[3].

C2h4 дегидрирование

11. Реакции аллильного замещения в алкенах. Аллильный радикал, его строение и причина повышенной стабильности.

При высоких температурах (более 400 °C) реакции радикального присоединения, носящие обратимый характер, подавляются. В этом случае становится возможным провести замещение атома водорода, находящегося в аллильном положении при сохранении двойной связи:

C2h4 дегидрирование

Реакция носит радикальный характер и протекает аналогично хлорированию алканов.

Аллильное бромирование обычно проводят N-бромсукцинимидом (реакция Воля-Циглера)[37] в присутствии перекиси бензоила в среде тетрахлорметана или в бинарной смеси диметилсульфоксида и воды[35]:

C2h4 дегидрирование

Аллил — углеводородный радикал, производное пропилена, у которого удален атом водорода от третьего атома углерода.Аллильная группа — органический заместитель, часть химического соединения, которое имеет вид CH2=CH-CH2-R. Соединения с аллильной группой часто встречаются в природе в растениях. Свое название аллил получил от латинского названия чеснока — Alliumsativum. Примеры соединений, в состав которых входит аллил — аллиловый спирт CH2=CH-CH2-OH, аллилхлорид CH2=CH-CH2-Cl.

Способы получения Аллил можно вводить различными реакциями, например реакцией Вюрца:

С6H5Br + CH2=CH-CH2-Br + 2Na → C6H5-CH2-CH=CH2 + 2NaBr

Или реакцией с реактивом Гриньяра:

CH3MgCl + CH2=CH-CH2-Cl → CH2=CH-CH2-CH3 + MgCl2

Галогениды аллила можно получать реакцией замещения с участием пропилена. (Реакция проходит при облучении.)

CH2=CH-CH3 + Cl2 → CH2=CH-CH2-Cl + HCl

Химические свойства Соединениям с аллильной группой характерны все свойства алкенов.

C2h4 дегидрирование

Аллил

12. Реакции окисления алкенов. Озонолиз, эпоксидирование, реакция Прилежаева, гидроксилирование. Окисление алкенов, катализируемое солями палладия(II)

Окисление Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета.

Окисление неорганическими окислителями В мягких условиях возможно окисление посредством присоединения по двойной связи двух гидроксильных групп[38]:

C2h4 дегидрирование

На первом этапе происходит присоединение оксида осмия к алкену, затем под действием воосстановителя (Zn или NaHSO3) образовавшийся комплекс переходит кдиолу (Реакция Криге).

Аналогично реакция идет в нейтральной или слабощелочной среде под действием KMnO4 (Реакция Вагнера)[38]:

C2h4 дегидрирование

При действии на алкены сильных окислителей (KMnO4 или K2Cr2O7 в среде Н2SO4) при нагревании происходит разрыв двойной связи:

C2h4 дегидрирование

C2h4 дегидрирование(кетон)

Некоторые окислители, например нитрат (III) таллия, окисляют алкены с перегруппировкой по следующей схеме[38]:

C2h4 дегидрирование

Окисление в присутствии солей палладия В присутствии солей палладия этилен окисляется до ацетальдегида[1]:

C2h4 дегидрирование

Реакция идет в кислой среде и является промышленным способом получения ацетальдегида.

Аналогично образуется ацетон из пропена.

Эпоксидирование При действии на алкены пероксикарбоновых кислот образуются эпоксиды (реакция Прилежаева)[39]:

C2h4 дегидрирование

Реакция эпоксидирования используется для промышленного получения этиленоксида. Окислителем выступает кислород воздуха; процесс идет на серебряном катализаторе при 200—250 °C под давлением.

Озонолиз Озонолиз алкенов обычно проводят при низких температурах (от −80 до −30 °C) в инертном растворителе (гексан, тетрахлорметан, хлороформ, этилацетат и пр.). Непосредственные продукты озонолиза не выделяют, а подвергают дальнейшему гидролизу, окислению или восстановлению[38].

Озонолиз в мягких условиях: алкен окисляется до альдегидов (в случае монозамещенных вицинальных углеродов), кетонов (в случае дизамещенных вицинальных углеродов) или смеси альдегида и кетона (в случае три-замещенного у двойной связи алкена).

На первой стадии происходит присоединение озона с образованием озонида. Далее под действием восстановителя (например: Zn + CH3COOH) озонид разлагается:

C2h4 дегидрированиеЕсли взять более сильный восстановитель, скажем — алюмогидрид лития, продуктом реакции будут спирты.

Озонолиз в жёстких условиях — алкен окисляется до кислоты:

C2h4 дегидрирование

В данном случае разложение озонида происходит под действием окислителей (пероксид водорода, оксид серебра, пероксикислоты и пр.[38])., 

studfiles.net

Химические свойства алканов

Алканами (парафинами) называют нециклические углеводороды, в молекулах которых все атомы углерода соединены только одинарными связями. Другими словами в молекулах алканов отсутствуют кратные — двойные или тройные связи. Фактически алканы являются углеводородами, содержащими максимально возможное количество атомов водорода, в связи с чем их называют предельным (насыщенными).

Ввиду насыщенности, алканы не могут вступать в реакции присоединения.

Поскольку атомы углерода и водорода имеют довольно близкие электроотрицательности, это приводит к тому, что связи С-Н в их молекулах крайне малополярны. В связи с этим для алканов более характерны реакции протекающие по механизму радикального замещения, обозначаемого символом SR.

1. Реакции замещения

В реакциях данного типа происходит разрыв связей углерод-водород

RH + XY → RX + HY

или

C-H plus X-Y ravno C-X plus H-Y

Галогенирование

Алканы реагируют с галогенами (хлором и бромом) под действием ультрафиолетового света или при сильном нагревании. При этом образуется смесь галогенпроизводных с различной степенью замещения атомов водорода — моно-, ди- три- и т.д. галогенозамещенных алканов.

На примере метана это выглядит следующим образом:

CH4 plus Cl2 minus HCl ravno CH3Cl plus Cl2 minus HCl

Меняя соотношение галоген/метан в реакционной смеси можно добиться того, что в составе продуктов будет преобладать какое-либо конкретное галогенпроизводное метана.

2. Реакции окисления

В обычных условиях алканы инертны по отношению к таким сильным  окислителям, как концентрированная серная и азотная кислоты,  перманганат и дихромат калия (КMnО4, К2Cr2О7).

Горение в кислороде

А) полное сгорание при избытке кислорода. Приводит к образованию углекислого газа и воды:

CH4 + 2O2 = CO2 + 2H2O

Б) неполное сгорание при недостатке кислорода:

2CH4 + 3O2 = 2CO + 4H2O

CH4 + O2 = C + 2H2O

Каталитическое окисление кислородом

В результате нагревания алканов с кислородом (~200 оС) в присутствии  катализаторов, из них может быть получено большое разнообразие органических продуктов: альдегиды, кетоны, спирты, карбоновые кислоты.

Например, метан, в зависимости природы катализатора, может быть окислен в метиловый спирт, формальдегид или муравьиную кислоту:

poluchenie iz metana kataliticheskim okisleniem metanola

3. Термические превращения алканов

Крекинг

Крекинг (от англ. to crack — рвать)  — это химический процесс протекающий при высокой температуре, в результате которого происходит разрыв углеродного скелета молекул алканов с образованием молекул алкенов и алканов с обладающих меньшими молекулярными массами по сравнению с исходными алканами. Например:

CH3-CH2-CH2-CH2-CH2-CH2-CH3  → CH3-CH2-CH2-CH3 + CH3-CH=CH2

Крекинг бывает термический и каталитический. Для осуществления  каталитического крекинга, благодаря использованию катализаторов, используют заметно меньшие температуры по сравнению с термическим крекингом.

Дегидрирование

Отщепление водорода происходит в результате разрыва связей С—Н; осуществляется в присутствии катализаторов при повышенных температурах. При дегидрировании метана образуется ацетилен:

2CH4 → C2H2 + 3H2

Нагревание метана до 1200 °С приводит к его разложению на простые вещества:

СН4 →  С + 2Н2

При дегидрировании остальных алканов образуются алкены:

C2H6 → C2H4 + H2

При дегидрировании н-бутана образуется бутен или бутен-2 (смесь цис- и транс-изомеров):

degidrirovanie butana

Дегидроциклизация

degidrociklizacija geptana

Изомеризация

izomerizacija n-butana v izo-butan na hloride aljuminija pri 100 gradusah

Химические свойства циклоалканов

Химические свойства циклоалканов с числом атомов углерода в циклах больше четырех, в целом практически идентичны свойствам алканов. Для циклопропана и циклобутана, как ни странно,  характерны реакции присоединения. Это обусловлено большим напряжением внутри цикла, которое приводит к тому, что данные циклы стремятся разорваться. Так циклопропан и циклобутан легко присоединяют бром, водород или хлороводород:

addition reaction to small cycloalkanes

Химические свойства алкенов

1. Реакции присоединения

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Гидрирование алкенов

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

CH3—СН=СН2 + Н2 → CH3—СН2—СН3

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Галогенирование

Алкены легко вступаю в реакцию присоединения с бромом как в водном растворе, так и с органических растворителях. В результате взаимодействия  изначально желтые растворы брома теряют свою окраску, т.е. обесцвечиваются.

СН2=СН2+ Br2 → CH2Br-CH2Br

Гидрогалогенирование

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

propen plus HBr ravno 1-bromproman ili 2-brompropan

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Поэтому:

propen plus HBr ravno 2-brompropan

Гидратация

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

hydratation of propene

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

CH2=CH2 + H2O → CH3-CH2-OH

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Полимеризация

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

polimerizacija jetilena

Реакции окисления

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

CnH2n+2 + O2 → nCO2 + (n+1)H2O

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

C2H4 + 2KMnO4 + 2H2O → CH2OH–CH2OH + 2MnO2 + 2KOH (охлаждение)

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

5CH3CH=CHCH2CH3 + 8KMnO4 + 12H2SO4 → 5CH3COOH + 5C2H5COOH + 8MnSO4 + 4K2SO4 + 17H2O (нагревание)

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

5CH3CH=CH2 + 10KMnO4 + 15H2SO4 → 5CH3COOH + 5CO2 + 10MnSO4 + 5K2SO4 + 20H2O (нагревание)

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Химические свойства алкадиенов

Реакции присоединения

Например, присоединение галогенов:

bromirovanie butadiena

Бромная вода обесцвечивается.

В обычных условиях присоединение атомов галогена происходит по концам молекулы  бутадиена-1,3, при этом π-связи разрываются, к крайним атомам углерода присоединяются атомы брома, а свободные валентности образуют новую π-связь. Таким образом, как бы происходит «перемещение» двойной связи. При избытке брома может быть присоединена еще одна его молекула по месту образовавшейся двойной связи.

Реакции полимеризации

polimerizacija butadiena

Химические свойства алкинов

Алкины являются ненасыщенными (непредельными) углеводородами в связи с чем способны вступать в реакции присоединения. Среди реакци присоединения для алкинов наиболее распространено электрофильное присоединение.

Галогенирование

Поскольку тройная связь молекул алкинов состоит из одной более прочной сигма-связи и двух менее прочных пи-связей они способны присоединять как одну, так и две молекулы галогена. Присоединение одной молекулой алкина двух молекул галогена протекает  по электрофильному механизму последовательно в две стадии:

dve stadii bromirovanija acetilena

Гидрогалогенирование

Присоединение молекул галогеноводорода, также протекает по электрофильному механизму и в две стадии. В обоих стадиях присоединение идет в соответствии с правилом Марковникова:

dve stadii vzaimodejstvija propina s bromovodorodom 2
prichiny prisoedinenija bromovodoroda po pravilu Markova v obeih stadijah 2

Гидратация

Присоединение воды к алкинами происходит в присутсвии солей рути в кислой среде и называется реакцией Кучерова.

В результате гидратации присоединения воды к ацетилену ообразуется ацетальдегид (укусный альдегид):

6C53D6 5

Для гомологов ацетилена присоединение воды приводит к образованию кетонов:

5B7666 1
prisoedinenie vody k acetilenu i propinu cherez promezhutochnoe obrazovanie enolov

Гидрирование алкинов

Алкины реагируют с водородом в две ступени. В качестве катализаторов используют такие металлы как платина, палладий, никель:

Тримеризация алкинов

При пропускании ацетилена над активированным углем при высокой температуре из него образуется смесь различных продуктов, основным из которых является бензол – продукт тримеризации ацетилена:

trimerizacija acetilena

Димеризация алкинов

Также ацетилен вступать в реакцию димеризации. Процесс протекает в присутствии солей меди как катализаторов:

1C6CBE 4

Окисление алкинов

Алкины сгорают в кислороде:

СnH2n-2 + (3n-1)/2 O2 → nCO2 + (n-1)H2O

Взаимодействие алкинов с основаниями

Алкины с тройной C≡C на конце молекулы, в отличие от остальных алкинов, способны вступать в реакции, в которых атом водорода при тройной связи замещается металл. Например, ацетилен реагирует с амидом натрия в жидком аммиаке:

HC≡CH + NaNH2 → NaC≡CNa + 2NH3,

а также с аммиачным раствором оксида серебра, образуя нерастворимые солеподобные вещества называемые ацетиленидами:

propin i butin-2 pljus ammiachnyj rastvor oksida serebra

Благодаря такой реакции можно распознать алкины с концевой тройной связью, а также выделить такой алкин из смеси с другими алкинами.

Следует отметить, что все ацетилениды серебра и меди являются взрывоопасными веществами.

Ацетилениды способны реагировать с галогенпроизводными, что используется  при синтезе более сложных органических соединений с тройной связью:

СН3-C≡CН + NaNН2 → СН3-C≡CNa + NН3

СН3-C≡CNa + CH3Br → СН3-C≡C-СН3 + NaBr

Химические свойства ароматических углеводородов

Ароматический характер связи влияет на химические свойства бензолов и других ароматических углеводородов.

Единая 6пи–электронная система намного более устойчива, чем обычные пи-связи. Поэтому для ароматических углеводородов более характерны реакции замещения, а не присоединения. В реакции замещения арены вступают по электрофильному механизму.

Реакции замещения

Галогенирование

bromirovanie benzola

Нитрование

Лучше всего реакция нитрования протекает под  действием не чистой азотной кислоты, а ее смеси с концентрированной серной кислотой, так называемой нитрующей смеси:

nitrovanie benzola

Алкилирование

Реакция при которой один из атомов водорода при ароматическом ядре замещается на углеводородный радикал:

11E9DF benzol plus ch3cl s alcl3 ravno metilbenzol 2

Также вместо галогенпроизводных алканов можно использовать алкены. В качестве катализаторов можно использовать галогениды алюминия, трехвалентного железа или неорганические кислоты.<

Реакции присоединения

Гидрирование

gidrirovanie benzola do ciklogeksana

Присоединение хлора

Протекает по радикальному механизму при интенсивном облучении ультрафиолетовым светом:

prisoedinenie hlora k benzolu

Подобным образом реакция может протекать только с хлором.

Реакции окисления

Горение

6Н6 + 15О2 = 12СО2 + 6Н2О+Q

Неполное окисление

Бензольное кольцо устойчиво к действию таких окислителей как KMnO4 и K2Cr2O7. Реакция не идет.

Деление заместителей в бензольном кольце на два типа:

Рассмотрим химические свойства гомологов бензола на примере толуола.

Химические свойства толуола

Галогенирование

Молекулу толуола можно рассматривать, как состоящую из фрагментов молекул бензола и метана. Поэтому логично предположить, что химические свойства толуола должны в какой-то мере сочетать химические свойства этих двух веществ, взятых по отдельности. В частyости, именно это и наблюдается при его галогенировании. Мы уже знаем, что бензол вступает в реакцию замещения с хлором по электрофильному механизму, и для осуществления данной реакции необходимо использовать катализаторы (галогениды алюминия или трехвалентного железа). В то же время метан так же способен реагировать с хлором, но уже по свободно-радикальному механизму, для чего требуется облучение исходной реакционной смеси УФ-светом. Толуол, в зависимости от того, в каких условиях подвергается хлорированию, способен дать либо продукты замещения атомов водорода в бензольном кольце – для это нужно использовать те же условия что и при хлорировании бензола, либо продукты замещения атомов водорода в метильном радикале, если на него, как и на метан действовать хлором при облучении ультрафиолетом:

hlorirovanie tolula hv
hlorirovanie tolula v prisutstvii katalizatora

Как можно заметить хлорирование толуола в присутствии хлорида алюминия привело к двум разным продуктам – орто- и пара-хлортолуолу. Это обусловлено тем, что метильный радикал является заместителем I рода.

Если хлорирование толуола в присутсвии AlCl3 проводить в избытке хлора, возможно образование трихлорзамещенного толуола:

hlorirovanie tolula do 2,4,6-trihlortoluola

Аналогично при хлорировании толуола на свету при большем соотношении хлор/толуол можно получить дихлорметилбензол или трихлорметилбензол:

dihlormetiltoluol i trihlormetiltoluol

Нитрование

Замещение атомов водорода на нитрогрппу, при нитровании толуола смесью концентрированных азотной и серной кислот, приводит к продуктам замещения в ароматическом ядре, а не метильном радикале:

nitrovanie toluola do trotila

Алкилирование

Как уже было сказано метильный радикал, является ориентантом I рода, поэтому его алкилирование по Фриделю-Крафтсу приводит продуктам замещения в орто- и пара-положения:

alkilirovanie toluola trihlormetanom
alkilirovanie toluola jetilenom 2

Реакции присоединения

Толуол можно прогидрировать до метилциклогексана при использовании металлических катализаторов (Pt, Pd, Ni):

hydrirovanie toluola do metilciklogeksana

С6Н5СН3 + 9O2 → 7СO2 + 4Н2O

scienceforyou.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector