Плотность метанол

Плотность метанола и другие его физические свойства

Он растворим в воде и некоторых полярных органических растворителях. Метиловый спирт очень ядовит. В человеческом организме он окисляется до муравьиного альдегида или муравьиной кислоты.

Основные константы метанола приведены в таблице ниже.

Таблица 1. Физические свойства и плотность метанола.

Плотность, г/см3

0,7918

Температура плавления, oС

-97

Температура кипения, oС

64,7

Динамическая вязкость, Па×с

5,9×10-4

Молярная масса, г/моль

32,04

Смесь воздуха с метанолом, содержание которого находится в пределах 6,98 – 35,5% взрывоопасна при температуре выше 8oС.

Химический состав и строение молекулы метанола

Химический состав молекулы метанола можно отразить при помощи эмпирической (CH3OH) и рациональной (CH3-OH) формул (рис. 1).

Атом кислорода в молекуле метанола обладает большой электроотрицательностью и оттягивает на себя электронную плотность σ-связей связанных с ним атомов, в частности атома водорода. Связь O-H в молекуле метилового спирта сильно поляризована CH3-CH2→O←H. Электронная плотность в атоме водорода оказывается пониженной. Поэтому он может взаимодействовать с неподеленной парой электронов атома кислорода другой молекулы метанола. Между двумя молекулами возникает нековалентная водородная связь. Связанные между собой водородными связями молекулы метилового спирта образуют ассоциаты.

Краткое описание химических свойств и плотность метанола

Метанол является первым представителем гомологического ряда одноатомных спиртов.

За счет присутствия в воздухе кислорода, который способен выступать в роли окислителя, метиловый спирт сгорает на воздухе (светло-голубое пламя) с образованием углекислого газа и воды:

CH3OH + 2O2 = CO2 + 2H2O.

За счет наличия в молекуле метанола кислотного центра он взаимодействует со щелочными, а также некоторыми щелочноземельными металлами и их гидридами с образованием солеподобных соединений – алкоголятов:

2CH3OH + 2K = 2CH3OK + H2;

CH3OH + NaH = CH3ONa + H2.

Метиловый спирт вступает в реакции нуклеофильного замещения с галогенводородными кислотами:

CH3OH + HCl = CH3Cl + H2O.

При взаимодействии метанола с альдегидами образуются ацетали, с карбоновыми кислотами – сложные эфиры:

CH3OH + R-COH = R-CH(OH)-O-CH3;

CH3OH + R-COOH = R-COOCH3 + H2O.

В присутствии водоотнимающих реагентов и при нагревании до температуры выше 120oС метиловый спирт подвергается дегидратации:

2CH3OH = CH3-O- CH3 + H2O (H2SO4 (conc), 120oC).

ru.solverbook.com

 

Метанол (метиловый спирт) является одним из важнейших по значению и масштабам производства органическим продуктом, вы­пускаемым химической промышленностью. Впервые метанол был найден в древесном спирте в 1661 г., но лишь в 1834 г. был выде­лен из продуктов сухой перегонки древесины Думасом и Пелиготом. В это же время была установлена его химическая формула. Способы получения метилового спирта могут быть различны: сухая перегонка древесины, термическое разложение формиатов, гидрирование метилформиата, омыление метилхлорида, каталити­ческое неполное окисление метана, каталитическое гидрирование .окиси и двуокиси углерода.

До промышленного освоения каталитического способа метанол получали в основном сухой перегонкой древесины. «Лесохимиче­ский метиловый спирт» загрязнен ацетоном и другими трудноотделимыми примесями. В настоящее время этот метод получения метанола практически не имеет промышленного значения. По при­чинам технического и главным образом экономического характера промышленное развитие получил метод синтеза метанола из окиси углерода и водорода.

Метанол являет­ся сырьем для получения таких продуктов как формальдегид (око­ло 50% от всего выпускаемого метанола), синтетический каучук (~11%), метиламин (~’9%), а также диметилтерефталат, метилметакрилат, пентаэритрит, уротропин. Его используют в производ­стве фотопленки, аминов, поливинилхлоридных, карбамидных и ионообменных смол, красителей и полупродуктов, в качестве рас­творителя в лакокрасочной промышленности. В большом количе­стве метанол потребляют для получения различных химикатов, например хлорофоса, карбофоса, хлористого и бромистого метила и различных ацеталей.

 

Метиловый спирт, метанол СН3ОН является простейшим пред­ставителем предельных одноатомных спиртов. В свободном со­стоянии в природе встречается редко и в очень небольших количе­ствах (например, в эфирных маслах). Его производные, наоборот, содержатся во многих растительных маслах (сложные эфиры), природных красителях, алкалоидах (простые эфиры) и т. д. При обычных условиях это бесцветная, легколетучая, горючая жидкость,. иногда с запахом, напоминающим запах этилового спирта. На организм человека метанол действует опьяняющим образом и яв­ляется сильным ядом, вызывающим потерю зрения и, в зависимо­сти от дозы, смерть.

Физические характеристики метанола при нормальных условиях следующие:

Молекулярный вес ………… 32,04

Плотность, г/см3 …………. 0,8100

Вязкость, мПа-с …………. 0,817

Температура кипения, °С ……… 64,7

Температура плавления, °С …….. —97,68

Теплота парообразования, ккал/моль …. 8,94

Теплота сгорания, ккал/моль

жидкого …………… 173,65

газообразного…………. 177,40

Плотность и вязкость метанола уменьшаются при повышении температуры таким образом:

Плотность метанол Плотность метанол Плотность метанол Плотность метанол Плотность метанол Плотность метанол -40 °С -20 °С О °С 20 °С 40 °С 60 °С

Плотность, г/см3 ……. 0,8470 0,8290 0,8100 0,7915 0,7740 0,7555.

Плотность метанол Вязкость, мПа.с. …… 1,750 1,160 0,817 0,597 0,450 0,350

Метанол при стандартных условиях имеет незначительное дав­ление насыщенных паров. При повышении температуры давление насыщенных паров резко увеличивается".’ Так, при увеличении температуры с 10 до 60 °С давление насыщенных паров повы­шается от 54,1 до 629,8 мм рт. ст., а при 100 °С оно составляет 2640 мм рт. ст. углеводородами. Он хорошо поглощает пары воды, двуокись угле­рода и некоторые другие вещества.

Следует указать на способность метанола хорошо растворять большинство известных газов и паров. Так, растворимость гелия, неона, аргона, кислорода в метаноле при стандартных условиях выше, чем растворимость их в ацетоне, бензоле, этиловом спирте, циклогексане и т. д. Растворимость всех этих газов при разбавле­нии метанола водой уменьшается. Высокой растворимостью газов широко пользуются в промышленной практике, применяя метанол и его растворы в качестве поглотителя для извлечения примесей из технологических газов.

Свойства растворов метанола в смеси с другими веществами значительно отличаются от свойств чистого метилового спирта. Интересно рассмотреть изменение свойств системы метанол—во­да. Температура кипения водных растворов метанола закономерно увеличивается при повышении концентрации воды и давления . Температура затвердевания растворов по мере увеличения концентрации метанола понижается: -54 °С при содержании 40% СН3ОН и —132°С при 95% СН3ОН.

Плотность водных растворов метанола увеличивается при по­нижении температуры и почти равномерно уменьшается с увеличе­нием концентрации метанола от плотности воды до плотности »спирта при измеряемой температуре. Зависимость вязкости от концентрации метанола имеет при всех исследованных температурах максимум при содержании СН3ОН около 40%. В точке максимума вязкость раствора больше вязко­сти чистого метанола.

Метанол смешивается во всех отношениях со значительным числом органических соединений. Со многими из них он образует азеотропные смеси — растворы, перегоняющиеся без изменения состава и температуры кипения, т. е. без разделения; К настояще­му времени известно свыше 100 веществ, в числе которых имеются и соединения, обычно присутствующие в метаноле-сырце. К этим веществам, например, относятся ацетон, метилацетат, метилэтилкетон, метилпропионат и некоторые другие. Необходимо отметить, что азеотропные смеси с содержанием таких соединений, как ме-тилэтилкетон, метилпропионат, пропилформиат, изобутилформиат и ряд других имеют температуру кипения, близкую к температуре кипения чистого метанола (62—64,6 °С).

Метанол сочетает свойства очень слабого основания и еще бо­лее слабой кислоты, что обусловлено наличием алкильной и гидроксильной групп. При окислении метанола кислородом в присутст­вии катализатора образуется формальдегид:

СН3ОН + 0,5СО2 ↔ НСНО + Н2О

На этой реакции основан широко применяемый в промышлен­ности метод получения формальдегида, который используют в про­изводстве пластических масс. При действии щелочей металлов водород гидроксильной группы метанола замещается с образова­нием алкоголята

2СН3ОН + 2Na ——> 2CH3ONa + 2Н2

который стоек только в отсутствие воды, так как вода омыляет его до метанола и щелочи:

СН3ОNa + Н2О ® СН3ОН + NaOH

С аммиаком метанол образует метиламины:

СН3ОН + NH3 ——> CH3NH2 + Н2О

СН3ОН + СН32 ——> (CH3)NH2 + Н2О

CH3OH + (СН3)2NH2 ——> (СН3)3NH2 + Н2О

Эти реакции протекают в паровой фазе в присутствии катали­заторов при 370—400 °С и повышенных давлениях..

Дегидратацией на катализаторе при повышенных температурах получают диметиловый эфир:

2СН3ОН ——> (СН3)2О + Н2О

При взаимодействии метанола и минеральных кислот образуют­ся сложные эфиры. Этот процесс называется этерификацией, и его широко используют в промышленной практике для получения раз­личных метиловых эфиров — метилхлоридов, метилбромидов, метилнитратов, метилсульфатов и др.:

СН3ОН + H2SO4 ——>- СН33ОН + Н2О

Органические кислоты также реагируют с метанолом с образо­ванием сложных эфиров:

СН3ОН + СН3СООН ——> СН3СООСНз + Н2О

 

poznayka.org

chem21.info

Структурная формула

Структурная формула Метанола Структурная формула Метанола

Истинная, эмпирическая, или брутто-формула: CH4O

Химический состав Метанола

Символ Элемент Атомный вес Число атомов Процент массы
C Углерод 12,011 1 37,5%
H Водород 1,008 4 12,6%
O Кислород 15,999 1 49,9%

Молекулярная масса: 32,042

Метанол (метиловый спирт, древесный спирт, карбинол, метилгидрат, гидроксид метила) — CH3OH, простейший одноатомный спирт, бесцветная ядовитая жидкость. Метанол — это первый представитель гомологического ряда одноатомных спиртов.
С воздухом в объёмных концентрациях 6,98—35,5 % образует взрывоопасные смеси (температура вспышки 8 °C). Метанол смешивается в любых соотношениях с водой и большинством органических растворителей.

История

Метанол был впервые обнаружен Бойлем в 1661 году в продуктах сухой перегонки древесины. Через два столетия, в 1834 году, его выделили в чистом виде Думас и Пелигот. Тогда же была установлена химическая формула метанола. В 1857 году Бертло получил метанол омылением метилхлорида.

Получение

Известно несколько способов получения метанола: сухая перегонка древесины и лигнина, термическое разложение солей муравьиной кислоты, синтез из метана через метилхлорид с последующим омылением, неполное окисление метана и получение из синтез-газа. Первоначально в промышленности был освоен метод получения метанола сухой перегонкой древесины, но впоследствии он потерял своё промышленное значение. Современное производство метанола из монооксида углерода и водорода впервые было осуществлено в Германии компанией BASF в 1923 году. Процесс проводился под давлением 25—35 МПа на цинк-хромовом катализаторе (ZnO/Cr2O3) при температуре 320—450 °C. Впоследствии распространение получил синтез метанола на медьсодержащих катализаторах, промотированных цинком, хромом и др., при 200—300 °C и давлении 3,5—5,5 МПа, разработанный в Англии.
Современный промышленный метод получения — синтез из оксида углерода(II) и водорода на медь-цинковом оксидном катализаторе при следующих условиях:

  • температура — 250 °C,
  • давление — 7 МПа (= 70 атм = 70 Бар = 71,38 кгс/см²)

Схема механизма каталитического получения метанола сложна и суммарно может быть представлена в виде реакции:
CO + 2H2 → CH3OH
До промышленного освоения каталитического способа получения метанол получали при сухой перегонке дерева (отсюда его название «древесный спирт»). В данное время этот способ не актуален. Молекулярная формула — CH4O или CH3—OH

Производство метанола (в тыс. тон):

Год США Германия Мир Цена продажи($/т)
1928 24 18 140 84,7
1936 97 93 305 88,9
1950 360 120 349 83,1
1960 892 297 3930 99,7
1970 2238 5000 49,9%
1980 3176 870 15000 236,1
2004 3700 2000 32000 270

Применение

В органической химии метанол используется в качестве растворителя.
Метанол используется в газовой промышленности для борьбы с образованием гидратов (из-за низкой температуры замерзания и хорошей растворимости). В органическом синтезе метанол применяют для выпуска формальдегида, формалина, уксусной кислоты и ряда эфиров (например, МТБЭ и ДМЭ), изопрена и др.
Наибольшее его количество идёт на производство формальдегида, который используется для производства карбамидоформальдегидных и фенолформальдегидных смол. Значительные количества CH3OH используют в лакокрасочной промышленности для изготовления растворителей при производстве лаков. Кроме того, его применяют (ограниченно из-за гигроскопичности и отслаивания) как добавку к жидкому топливу для двигателей внутреннего сгорания. Используется в топливных элементах.
Благодаря высокому октановому числу, позволяещему увеличить степень сжатия до 16, увеличивая тем самым удельную мощность двигателя, метанол используется для заправки гоночных мотоциклов и автомобилей. Метанол горит в воздушной среде, и при его окислении образуется двуокись углерода и вода.
2CH3OH + 3O2 → 2CO2 + 4H2O Для получения биодизеля растительное масло переэтерифицируется метанолом при температуре 60 °C и нормальном давлении приблизительно так: 1 т масла + 200 кг метанола + гидроксид калия или натрия.
Во многих странах метанол применяется в качестве денатурирующей добавки к этанолу при производстве парфюмерии. В России использование метанола в потребительских товарах запрещено.
При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли).
Работа топливных элементов основана на реакции окисления метанола на катализаторе в диоксид углерода. Вода выделяется на катоде. Протоны (H+) проходят через протонообменную мембрану к катоду где они реагируют с кислородом и образуют воду. Электроны проходят через внешнюю цепь от анода к катоду снабжая энергией внешнюю нагрузку.
Реакции:
На аноде CH3OH + H2O → CO2 + 6H+ + 6e
На катоде 1.5O2 + 6H+ + 6e → 3H2O
Общая для топливного элемента: CH3OH + 1,5O2 → CO2 + 2H2O
Получение муравьиной кислоты окислением метанола.
Получение диметилового эфира дегидратацией метанола при 300—400 °C и 2-3 МПа в присутствии гетерогенных катализаторов — алюмосиликатов — степень превращения метанола в диметиловый эфир — 60 % или цеолитов — селективность процесса близка к 100 %. Диметиловый эфир (C2H6O) — экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90 % меньше, чем у бензина. Цетановое число диметилового дизеля более 55, при том что у классического нефтяного 38-53.
Метил-трет-бутиловый эфир получается при взаимодействии метанола с изобутиленом в присутствии кислых катализаторов (например, ионообменных смол).
Метил-трет-бутиловый эфир (C5H12O) применяется в качестве добавки к моторным топливам, повышающей октановое число бензинов (антидетонатор). Максимальное законодательное содержание МТБЭ в бензинах Европейского союза — 15 %, в Польше — 5 %. В России в среднем составе бензинов содержание МТБЭ составляет до 12 % для АИ92 и до 15 % для АИ95, АИ98.
Отдельным направлением является использование метанола для переэтерификации жиров в производстве биодизеля.

Гомологизация метанола

Гомологизация, то есть превращение органического соединения в свой гомолог путём внедрения одной или нескольких метиленовых групп, для спиртов была впервые осуществлена в 1940 году — на основе метанола каталитическим путём под воздействием высокого давления был синтезирован этанол. Реакция гомологизации по своему механизму близка реакции гидроформилирования алкенов и в настоящее время с помощью модифицированных катализаторов кобальта и рутения и добавления йодид-ионов в качестве промоторов удаётся добиться 90 % выхода по этанолу. Исходный метанол также получают из окиси углерода (катализаторы на основе оксидов меди и цинка, давление 5—10 МПа, температура 250 °C), так что общая схема выглядит следующим образом. Побочными продуктами реакции в случае синтеза этанола будут ацетальдегид, этилен и диэтиловый эфир.

В 1940 году впервые была осуществлена катализируемая оксидом кобальта при давлении 600 атм реакция метанола с синтез-газом с образованием в качестве основного продукта этанола… Впоследствии эта реакция, названная гомологизацией, вызвала огромный интерес у химиков. Её привлекательность связана с возможностью получения этилена из угольного сырья Применение в качестве катализаторов карбонила кобальта Со2(СО)8 позволило понизить давление до 250 атм, при этом степень превращения метанола составила 70 %, а основной продукт — этанол образовывался с селективностью 40 %. В дальнейшем были предложены более селективные катализаторы на основе соединений кобальта и рутения с добавками фосфиновых лигандов и было установлено, что реакцию можно ускорить с помощью введения промоторов — иодид-ионов. В настоящее время удалось достичь селективности по этанолу 90 %. Хотя механизм гомологизации до конца не установлен, можно считать, что он близок к механизму карбонилирования метанола.

Биометанол

Промышленное культивирование и биотехнологическая конверсия морского фитопланктона рассматривается как одно из наиболее перспективных направлений в области получения биотоплива. В начале 80-х рядом европейских стран совместно разрабатывался проект, ориентированный на создание промышленных систем с использованием прибрежных пустынных районов. Осуществлению этого проекта помешало общемировое снижение цен на нефть. Первичное производство биомассы осуществляется путём культивирования фитопланктона в искусственных водоёмах, создаваемых на морском побережье. Вторичные процессы представляют собой метановое брожение биомассы и последующее гидроксилирование метана с получением метанола. Основными доводами в пользу использования микроскопических водорослей являются следующие:

  • высокая продуктивность фитопланктона (до 100 т/га в год);
  • в производстве не используются ни плодородные почвы, ни пресная вода;
  • процесс не конкурирует с сельскохозяйственным производством;
  • энергоотдача процесса достигает 14 на стадии получения метана и 7 на стадии получения метанола;

С точки зрения получения энергии данная биосистема имеет существенные экономические преимущества по сравнению с другими способами преобразования солнечной энергии.

Метанол в качестве топлива

При применении метанола в качестве топлива следует отметить, что объёмная и массовая энергоёмкость (теплота сгорания) метанола (удельная теплота сгорания = 22,7 МДж/кг) на 40—50 % меньше, чем бензина, однако при этом теплопроизводительность спиртовоздушных и бензиновых топливовоздушных смесей при их сгорании в двигателе различается незначительно по той причине, что высокое значение теплоты испарения метанола способствует улучшению наполнения цилиндров двигателя и снижению его теплонапряженности, что приводит к повышению полноты сгорания спиртовоздушной смеси. В результате этого мощность двигателя повышается на 7—9 %, а крутящий момент на 10—15 %. Двигатели гоночных автомобилей, работающих на метаноле с более высоким октановым числом, чем бензин, имеют степень сжатия, превышающую 15:1, в то время как в обычном ДВС с искровым зажиганием степень сжатия для неэтилированного бензина как правило, не превышает 11,5:1. Метанол может использоваться как в классических двигателях внутреннего сгорания, так и в специальных топливных элементах для получения электричества.
Отдельно следует отметить увеличение индикаторного КПД при работе классического ДВС на метаноле по сравнению с его работой на бензине. Такой прирост вызван снижением тепловых потерь и может достигать единиц процентов.

Топливо Плотность энергии Смесь воздуха с топливом Удельная энергия смеси воздуха с топливом Удельная теплота испарения Октановое число (RON) Октановое число (MON)
Бензин 32 МДж/л 14,6 2,9 МДж/кг воздух 0,36 МДж/кг 91—99 81—89
Бутанол-1 29,2 МДж/л 11,1 3,2 МДж/кг воздух 0,43 МДж/кг 96 78
Этанол 19,6 МДж/л 9,0 3,0 МДж/кг воздух 0,92 МДж/кг 132 89
Метанол 16 МДж/л 6,4 3,1 МДж/кг воздух 1,2 МДж/кг 156 92

Недостатки

  • Метанол травит алюминий. Проблемным является использование алюминиевых карбюраторов и инжекторных систем подачи топлива в ДВС. Это относится в основном к метанолу-сырцу, содержащему значительные количества примесей муравьиной кислоты и формальдегида. Технически чистый метанол, содержащий воду, начинает реагировать с алюминием при температуре выше 50 °C, а с обычной углеродистой сталью не реагирует вовсе.
  • Гидрофильность. Метанол втягивает воду, что является причиной расслоения топливных смесей бензин-метанол.
  • Метанол, как и этанол, повышает пропускную способность пластмассовых испарений для некоторых пластмасс (например, плотного полиэтилена). Эта особенность метанола повышает риск увеличения эмиссии летучих органических веществ, что может привести к уменьшению концентрации озона и усилению солнечной радиации.
  • Уменьшенная летучесть при холодной погоде: моторы, работающие на чистом метаноле, могут иметь проблемы с запуском при температуре ниже +10 °C и отличаться повышенным расходом топлива до достижения рабочей температуры. Данная проблема однако, легко решается добавлением в метанол 10—25 % бензина.

Низкий уровень примесей метанола может быть использован в топливе существующих транспортных средств с использованием надлежащих ингибиторов коррозии. Т. н. европейская директива качества топлива (European Fuel Quality Directive) позволяет использовать до 3 % метанола с равным количеством присадок в бензине, продаваемом в Европе. Сегодня в Китае используется более 1000 млн галлонов метанола в год в качестве транспортного топлива в смесях низкого уровня, используемых в существующих транспортных средств, а также высокоуровневые смеси в транспортных средствах, предназначенных для использования метанола в качестве топлива.
Помимо применения метанола в качестве альтернативы бензина существует технология применения метанола для создания на его базе угольной суспензии, которая в США имеет коммерческое наименование «метакол» (methacoal). Такое топливо предлагается как альтернатива мазута, широко используемого для отопления зданий (Топочный мазут). Такая суспензия в отличие от водоуглеродного топлива не требует специальных котлов и имеет более высокую энергоемкость. С экологической точки зрения такое топливо имеет меньший «углеродный след», чем традиционные варианты синтетического топлива получаемого из угля с использованием процессов, где часть угля сжигается во время производства жидкого топлива.

Свойства метанола и его реакции

При написании этой статьи использовался материал из Энциклопедического словаря Брокгауза и Ефрона (1890—1907). Метанол — бесцветная жидкость с алкогольным запахом (запах этилового спирта). Температура кипения 64,7°.
Удельный вес при 0°/0° = 0,8142 (Копп); при 15°/15° = 0,79726; при 25°/25° = 0,78941 (Perkin); при 64,8°/4° = 0,7476 (Шифф); при 0°/4° = 0,81015; при 15,56°/4° = 0,79589 (Dittmar и Fawsitt). Капиллярная постоянная при температуре кипения a ² =5,107 (Шифф); Критическая температура 241,9° (Шмидт). Упругость пара при 15° = 72,4 мм; при 29,3° = 153,4 мм; при 43° = 292,4 мм; при 53° = 470,3 мм; при 65,4° = 756,6 мм (Д. Коновалов). Теплота горения равна 170,6, теплота образования 61,4 (Штоман, Клебер и Лангбейн).
Метанол смешивается во всех отношениях с водой, этиловым спиртом и эфиром; при смешении с водой происходит сжатие и разогревание. Горит синеватым пламенем. Подобно этиловому спирту — сильный растворитель, вследствие чего во многих случаях может заменять этиловый спирт. Безводный метанол, растворяя небольшое количество медного купороса, приобретает голубовато-зеленое окрашивание, поэтому безводным медным купоросом нельзя пользоваться для открытия следов воды в метаноле; но он не растворяет CuSO4∙7H2O (Клепль).
Метанол (в отличие от этанола) с водой не образует азеотропной смеси, в результате чего смеси вода-метанол могут быть разделены ректификационной перегонкой. Метанол дает со многими солями соединения, подобные кристаллогидратам (сольваты), например: CuSO4 ∙ 2СН3ОН; LiCl ∙ 3СН3ОН; MgCl2 ∙ 6СН3ОН; CaCl2 ∙ 4СН3ОН представляет собой шестисторонние кристаллы, разлагаемые водой, но не разрушаемые нагреванием до 100° (Kane). Соединение ВаО ∙ 2СН3ОН ∙ 2Н2O получается в виде блестящих призм при растворении ВаО в водном метаноле и испарении на холоде полученной жидкости при комнатной температуре (Форкранд).
С едкими щелочами метанол образует соединения 5NaOH ∙ 6СН3ОН; 3KOH ∙ 5СН3OH (Геттиг). При действии металлических калия и натрия легко дает алкоголяты, присоединяющие к себе кристаллизационный метанол и иногда воду.
При пропускании паров метанола через докрасна накаленную трубку получается C2H2 и др. продукты (Бертло). При пропускании паров метанола над накаленным цинком получается окись углерода, водород и небольшие количества болотного газа (Jahn). Медленное окисление паров метанола при помощи раскаленной платиновой или медной проволоки представляет лучшее средство для получения больших количеств формальдегида: 2СН3ОН+О2=2НСНО+2Н2О. При действии хлористого цинка и высокой температуры метанол дает воду и алканы, а также небольшие количества гексаметилбензола (Лебедь и Грин). Метанол, нагретый с нашатырем в запаянной трубке до 300°, дает моно-, ди- и триметиламины (Бертло).
При пропускании паров метанола над KOH при высокой температуре выделяется водород и образуются последовательно муравьинокислый, щавелевокислый и, наконец, углекислый калий. Концентрированная серная кислота дает метилсерную кислоту CH3HSO4, которая при дальнейшем нагревании с метанолом дает метиловый эфир. При перегонке метанола с избытком серной кислоты в отгон переходит диметилсерная кислота (CH3)2SO4. При действии серного ангидрида SO3 получается CH(OH)(SO3H)2 и CH2(SO2H)2 (см. Метилен).
Метанол при действии соляной кислоты, пятихлористого фосфора и хлористой серы дает хлористый метил СН3Cl. Действием HBr и H2SO4 получают бромистый метил. Подкисленный 5%-й серной кислотой и подвергнутый электролизу, метанол дает СО2, СО, муравьинометиловый эфир, метилсерную кислоту и метилаль СН2(ОСН3)2 (Ренар). При нагревании метанола с хлористо-водородными солями ароматических оснований (анилином, ксилидином, пиперидином) легко происходит замещение водорода в бензольном ядре метилом (Гофман, Ладенбург); реакция имеет большое техническое значение при приготовлении метилрозанилина и других искусственных пигментов.

Нахождение в природе

В свободном состоянии метиловый спирт встречается в природе лишь изредка и в очень небольших количествах (например в эфирных маслах), но производные его распространены довольно широко. Так, например, многие растительные масла содержат сложные эфиры метилового спирта: масла гаултерии — метиловый эфир салициловой кислоты С6H4(OH)COOCH3, масло жасмина — метиловый эфир антраниловой кислоты С6H4(NH2)COOCH3. Простые эфиры метилового спирта чрезвычайно часто встречаются среди природных веществ, например природных красителей, алкалоидов и т. п.
В промышленности метиловый спирт раньше получали исключительно путём сухой перегонки дерева. В жидких погонах, так называемом «древесном уксусе», наряду с уксусной кислотой (10 %), ацетоном (до 0,5 %), ацетальдегидом, аллиловым спиртом, метилацетатом, аммиаком и аминами содержится также 1,5—3 % метилового спирта. Для отделения уксусной кислоты продукты сухой перегонки пропускают через горячий раствор известкового молока, задерживающий её в виде уксуснокислого кальция. Значительно труднее отделить метиловый спирт от ацетона, так как температуры кипения их очень близки (ацетон, т.кип. 56,5°; метиловый спирт, т.кип. 64,7°). Все же путём тщательной ректификации на соответствующих колоннах в технике удается почти полностью отделить метиловый спирт от сопутствующего ему ацетона. Неочищенный метиловый спирт называется также «древесным спиртом».

Токсичность

Метанол — опаснейший яд, приём внутрь порядка 10 мл метанола может приводить к тяжёлому отравлению (одно из последствий — слепота), попадание в организм более 80-150 миллилитров метанола (1-2 миллилитра чистого метанола на килограмм тела) обычно смертельно. LD50 для животных — от единиц до десятка г/кг. Токсический эффект метанола развивается на протяжении нескольких часов, и эффективные антидоты способны уменьшить наносимый вред. Опасен для жизни не только чистый метанол, но и жидкости, содержащие этот яд даже в сравнительно небольшом количестве. В США максимальное суточное употребление метанола (Reference Dose), не связанное с какими-либо эффектами на здоровье, составляет 2 мг на кг веса тела (с 1988 года).
Предельно допустимая концентрация метанола в воздухе рабочей зоны равна 5 мг/м³ (у изопропилового спирта 10 мг/м³, у этанола — 1000 мг/м³), ПДК в воздухе населенных мест равна 1,0 мг/м³ (у изопропилового спирта 0,6 мг/м³, у этанола — 5 мг/м³). Наиболее легкая форма отравления характеризуется наличием головной боли, общей слабостью, недомоганием, ознобом, тошнотой, рвотой. Токсичность метанола состоит в том, что при попадании в организм он с течением времени окисляется до ядовитого формальдегида, который вызывает слепоту, вредно влияет на нервную систему, вступает в реакции с белками.
Особая опасность метанола связана с тем, что по запаху и вкусу он неотличим от этилового спирта, из-за чего и происходят случаи его употребления внутрь. Йодоформная реакция: с этиловым спиртом выпадет йодоформ желтого цвета, а с метанолом ничего не выпадает (реакция не подходит для определения содержания метанола в растворе этанола). Как указано в руководстве для врача скорой медицинской помощи, при отравлении метанолом антидотом является этанол, который вводится внутривенно в форме 10 % раствора капельно или 30—40 % раствора перорально из расчёта 1—2 грамма раствора на 1 кг веса в сутки. Полезный эффект в этом случае обеспечивается отвлечением фермента АДГ I на окисление экзогенного этанола.
Следует учесть, что при недостаточно точном диагнозе за отравление метанолом можно принять алкогольную интоксикацию, отравление дихлорэтаном или четырёххлористым углеродом — в этом случае введение дополнительного количества этилового спирта опасно. Известно множество массовых отравлений метанолом, в частности, массовое отравление метиловым спиртом 9-10 сентября 2001 года в городе Пярну (Эстония). Источником метанола могут быть фальсифицированные незамерзающие жидкости для автомобилей, контрафактный алкоголь, метанол, выдаваемый за этиловый спирт.
Самое серьезное заблуждение покупателей зимних незамерзающих жидкостей состоит в том, что они считают безопасной жидкость, которая практически не пахнет. Наоборот, не имеет резкого запаха только метанол. Стеклоомывающие жидкости на его основе также имеют слабо выраженный запах. Разрешенный к применению изопропиловый спирт пахнет достаточно резко, поэтому его приходится маскировать большим кол-вом специальных отдушек. Также достаточно весомым критерием оценки качества жидкости является её цена, которая не может быть менее 120-150 рублей в розницу для жидкости на минус 20 градусов. Изопропиловый спирт дорог. Как правило, «метанольные» жидкости повально реализуются на автомагистралях. На всех подобных бутылках написано «без метанола». Так как производители ядовитых жидкостей для стекол работают «в тени», то и температуры кристаллизации ими не соблюдается. Так, любая жидкость с трассы не рассчитана, как правило, на температуры ниже минус 5 градусов, не смотря на надписи на этикетках.

formula-info.ru

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.